Цифровой измеритель ёмкости. Измеритель емкости конденсаторов своими руками. Описание и настройка устройства Цифровой измеритель ёмкости

В электрических цепях применяются конденсаторы разного типа. В первую очередь они отличаются по емкости. Для того чтобы определить этот параметр, используются специальные измерители. Указанные устройства могут производиться с различными контактами. Современные модификации выделяются высокой точностью замеров. Для того чтобы сделать простой измеритель емкости конденсаторов своими руками, необходимо ознакомиться с основными составляющими прибора.

Как устроен измеритель?

Стандартная модификация включает в себя модуль с расширителем. Данные о выводятся на дисплей. Некоторые модификации функционируют на базе релейного транзистора. Он способен работать на разных частотах. Однако стоит отметить, что такая модификация не подходит для многих типов конденсаторов.

Устройства низкой точности

Сделать низкой точности измеритель ЭПС емкости конденсаторов своими руками можно при помощи переходного модуля. Однако в первую очередь используется расширитель. Контакты для него целесообразнее подбирать с двумя полупроводниками. При выходном напряжении 5 В ток должен составлять не более 2 А. Для защиты измерителя от сбоев применяются фильтры. Настройку осуществлять следует при частоте 50 Гц. Тестер в данном случае должен показывать сопротивление не выше 50 Ом. У некоторых возникают проблемы с проводимостью катода. В данном случае следует заменить модуль.

Описание моделей высокой точности

Делая измеритель емкости конденсаторов своими руками, расчет точности следует производить исходя из линейного расширителя. Показатель перегрузки модификации зависит от проводимости модуля. Многие эксперты советуют для модели подбирать дипольный транзистор. В первую очередь он способен работать без тепловых потерь. Также стоит отметить, что представленные элементы редко перегреваются. Контактор для измерителя можно использовать низкой проводимости.

Чтобы сделать простой точный измеритель емкости конденсаторов своими руками, стоит позаботиться о тиристоре. Указанный элемент должен работать при напряжении не менее 5 В. При проводимости 30 мк перегруженность у таких устройств, как правило, не превышает 3 А. Фильтры используются разного типа. Устанавливать их следует за транзистором. Также стоит отметить, что дисплей можно подключать только через проводниковые порты. Для зарядки измерителя подойдут батареи на 3 Вт.

Как сделать модель серии AVR?

Сделать измеритель емкости конденсаторов своими руками AVR можно только на базе переменного транзистора. В первую очередь для модификации подбирается контактор. Для настройки модели стоит сразу замерить выходное напряжение. Отрицательное сопротивление у измерителей не должно превышать 45 Ом. При проводимости 40 мк перегрузка в устройствах составляет 4 А. Чтобы обеспечить максимальную точность измерений, используются компараторы.

Некоторые эксперты рекомендуют подбирать только открытые фильтры. Они не боятся импульсных помех даже при большой загруженности. Полюсные стабилизаторы в последнее время пользуются большим спросом. Для модификации не подходят только сеточные компараторы. Перед включением устройства делается замер сопротивления. У качественных моделей данный параметр составляет примерно 40 Ом. Однако в данном случае многое зависит от частотности модификации.

Настройка и сборка модели на базе PIC16F628A

Сделать измеритель емкости конденсаторов своими руками на PIC16F628A довольно проблематично. В первую очередь для сборки подбирается открытый трансивер. Модуль разрешается использовать регулируемого типа. Некоторые эксперты не советуют устанавливать фильтры высокой проводимости. Перед пайкой модуля проверяется выходное напряжение.

При повышенном сопротивлении рекомендуется заменить транзистор. С целью преодоления импульсных помех применяются компараторы. Также можно использовать проводниковые стабилизаторы. Дисплеи часто применяются текстового типа. Устанавливать их стоит через канальные порты. Настройка модификации происходит при помощи тестера. При завышенных параметрах емкости конденсаторов стоит заменить транзисторы с малой проводимостью.

Модель для электролитических конденсаторов

При необходимости можно сделать измеритель емкости электролитических конденсаторов своими руками. Магазинные модели этого типа выделяются низкой проводимостью. Многие модификации производятся на контакторных модулях и работают при напряжении не более 40 В. Система защиты у них используется класса РК.

Также стоит отметить, что измерители данного типа отличаются пониженной частотностью. Фильтры у них применяются только переходного типа, они способны эффективно справляться с импульсными помехами, а также гармоническими колебаниями. Если говорить про недостатки модификаций, то важно отметить, что у них малая пропускная способность. Они показывают плохие результаты в условиях повышенной влажности. Также эксперты указывают на несовместимость с проводными контакторами. Устройства нельзя применять в цепи переменного тока.

Модификации для полевых конденсаторов

Устройства для полевых конденсаторов выделяются пониженной чувствительностью. Многие модели способны работать от прямолинейных контакторов. Устройства чаще всего используются переходного типа. Для того чтобы сделать модификацию своими руками, надо применять регулируемый транзистор. Фильтры устанавливаются в последовательном порядке. Для проверки измерителя применяются сначала конденсаторы малой емкости. При этом тестером фиксируется отрицательное сопротивление. При отклонении свыше 15 % необходимо проверить работоспособность транзистора. Выходное напряжение на нем не должно превышать 15 В.

Устройства на 2 В

На 2 В измеритель емкости конденсаторов своими руками делается довольно просто. В первую очередь эксперты рекомендуют заготовить открытый транзистор с низкой проводимостью. Также важно подобрать для него хороший модулятор. Компараторы, как правило, используются низкой чувствительности. Система защиты у многих моделей применяется серии КР на фильтрах сеточного типа. Для преодоления импульсных колебаний используются волновые стабилизаторы. Также стоит отметить, что сборка модификации предполагает применение расширителя на три контакта. Для настройки модели следует использовать контактный тестер, а показатель сопротивление не должен быть ниже 50 Ом.

Модификации на 3 В

Складывая измеритель емкости конденсаторов своими руками, можно использовать переходник с расширителем. Транзистор целесообразнее подбирать линейного типа. В среднем проводимость у измерителя должна равняться 4 мк. Также перед установкой фильтров важно зафиксировать контактор. Многие модификации также включают в себя трансиверы. Однако данные элементы не способны работать с полевыми конденсаторами. Предельный параметр емкости у них равняется 4 пФ. Система защиты у моделей применяется класса РК.

Модели на 4 В

Собирать измеритель емкости конденсаторов своими руками разрешается только на линейных транзисторах. Также для модели потребуется качественный расширитель и переходник. Если верить экспертам, то фильтры целесообразнее применять переходного типа. Если рассматривать рыночные модификации, то у них может использоваться два расширителя. Работают модели при частоте не более 45 Гц. При этом чувствительность у них часто меняется.

Если собирать простой измеритель, то контактор можно использовать без триода. У него малая проводимость, однако он способен работать при большой загруженности. Также стоит отметить, что модификация должна включать в себя несколько полюсных фильтров, которые будут уделять внимание гармоническим колебаниям.

Модификации с однопереходным расширителем

Сделать измеритель емкости конденсаторов своими руками на базе однопереходного расширителя довольно просто. В первую очередь рекомендуется подобрать для модификации модуль с низкой проводимостью. Параметр чувствительности при этом должен составлять не более 4 мВ. У некоторых моделей имеется серьезная проблема с проводимостью. Транзисторы применяются, как правило, волнового типа. При использовании сеточных фильтров быстро нагревается тиристор.

Чтобы избежать подобных проблем, рекомендуется устанавливать сразу два фильтра на сеточных переходниках. В конце работы останется только припаять компаратор. Для повышения работоспособности модификации устанавливаются канальные стабилизаторы. Также стоит отметить, что существуют устройства на переменных контакторах. Они способны работать при частоте не более 50 Гц.

Модели на базе двухпереходных расширителей: сборка и настройка

Сложить на двухпереходных расширителях цифровой измеритель емкости конденсаторов своими руками довольно просто. Однако для нормальной работы модификаций подходят только регулируемые транзисторы. Также стоит отметить, что при сборке нужно подбирать импульсные компараторы.

Дисплей для устройства подойдет строчного типа. При этом порт разрешается использовать на три канала. Для решения проблем с искажением в цепи применяются фильтры низкой чувствительности. Также стоит отметить, что модификации нужно собирать на диодных стабилизаторах. Настройка модели осуществляется при отрицательном сопротивлении 55 Ом.

Обнаружив в интернете статью Digital Capacitance Meter , я захотел собрать этот измеритель. Однако под рукой не оказалось микроконтроллера AT90S2313 и светодиодных индикаторов с общим анодом. Зато были ATMEGA16 в DIP-корпусе и четырехразрядный семисегментный жидкокристаллический индикатор. Выводов микроконтроллера как раз хватало на то, чтобы подключить его к ЖКИ напрямую. Таким образом, измеритель упростился всего до одной микросхемы (на самом деле, есть и вторая – стабилизатор напряжения), одного транзистора, диода, горстки резисторов-конденсаторов, трех разъемов и кнопки.Прибор получился компактный и удобный в использовании. Теперь у меня нет вопросов о том, как измерить емкость конденсатора. Особенно это важно для SMD-конденсаторов с емкостями в несколько пикофарад (и даже в доли пикофарада), которые я всегда проверяю перед тем, как в паять в какую-нибудь плату. Сейчас выпускается множество настольных и портативных измерителей, производители которых заявляют о нижнем пределе измерений емкости в 0.1 пФ и достаточной точности измерений таких малых емкостей. Однако во многих из них измерения проводятся на довольно низкой частоте (единицы килогерц). Спрашивается, можно ли получить приемлемую точность измерений в таких условиях (даже если параллельно измеряемому подключить конденсатор большей емкости)? Кроме того, в интернете можно найти довольно много клонов схемы RLC-метра на микроконтолллере и операционном усилителе (той самой, что с электромагнитным реле и с одно- или двухстрочным ЖКИ). Однако такими приборами малые емкости померить «по-человечески» не удается. В отличие от многих других, этот измеритель специально спроектирован для измерения малых значений емкости.

Что касается измерения малых индуктивностей (единицы наногенри), то я для этого с успехом использую анализатор RigExpert AA-230 , который выпускает наша компания.

Фотография измерителя емкости:

Параметры измерителя емкости

Диапазон измерения: от 1 пФ до примерно 470 мкФ.
Пределы измерения: автоматическое переключение пределов – 0…56 нФ (нижний предел) и 56 нФ … 470 мкФ (верхний предел).
Индикация: три значащие цифры (две цифры для емкостей меньших, чем 10 пФ).
Управление: единственная кнопка для установки «нуля» и калибровки.
Калибровка: однократная, при помощи двух образцовых конденсаторов, 100 пФ и 100 нФ.

Большая часть выводов микроконтроллера подключена к ЖКИ. К некоторым из них также подключен разъем для внутрисхемного программирования микроконтроллера (ByteBlaster). Четыре вывода задействованы в схеме измерения емкости, включая входы компаратора AIN0 и AIN1, выход управления пределами измерения (при помощи транзистора) и выход выбора порогового напряжения. К единственному оставшемуся выводу микроконтроллера подключена кнопка.

Стабилизатор напряжения +5 В собран по традиционной схеме.

Индикатор – семисегментный, на 4 знака, с прямым подключением сегментов (т.е. не-мультиплексный). К сожалению, на ЖКИ не было маркировки. Такую же цоколевку и размеры (51×23 мм) имеют индикаторы многих фирм, например, AND и Varitronix.

Схема приведена ниже (на схеме не показан диод для защиты от «переполюсовки», через него рекомендуется подключить разъем питания):

Программа микроконтроллера

Поскольку ATMEGA16 – из серии «MEGA», а не из серии «tiny», особого смысла писать ассемблерную программу нет смысла. На языке Си удается сделать ее гораздо быстрей и проще, а приличный объем flash-памяти микроконтроллера позволяет пользоваться встроенной библиотекой функций с плавающей точкой при расчете емкости.

Микроконтроллер проводит измерение емкости за два шага. В первую очередь, определяется время заряда конденсатора через резистор сопротивлением 3.3 МОм (нижний предел). Если необходимое напряжение не достигнуто в течение 0.15 секунд (что соответствует емкости около 56 пФ), заряд конденсатора повторяется через резистор 3.3 кОм (верхний предел измерения).

При этом микроконтроллер сперва разряжает конденсатор через резистор сопротивлением 100 Ом, а затем заряжает его до напряжения 0.17 В. Только после этого замеряется время заряда до напряжения 2.5 В (половина напряжения питания). После этого, цикл измерения повторяется.

При выводе результата на выводы ЖКИ подается напряжение переменной полярности (относительно его общего провода) с частотой около 78 Гц. Достаточно высокая частота полностью устраняет мерцание индикатора.

Схема эта, несмотря на свою видимую сложность, совсем проста в повторении, поскольку собрана на цифровых микросхемах и при отсутствии ошибок в монтаже и использовании заведомо исправных деталей практически не требует настройки. Тем не менее, возможности устройства достаточно велики:

  • диапазон измерения – 0,01 — 10000 мкФ;
  • 4 поддиапазона – 10, 100, 1000, 10 000 мкФ;
  • выбор поддиапазона – автоматический;
  • индикация результата – цифровая, 4 разряда с плавающей десятичной точкой;
  • погрешность измерения – единица младшего разряда;

Рассмотрим схему прибора:

щелкните для увеличения

На микросхеме DD1, точнее на двух его элементах, собран кварцевый генератор, работа которого пояснений не требует. Дальше тактовая частота поступает на делитель, собранный на микросхемах DD2 – DD4. Сигналы с него с частотами 1 000, 100, 10 и 1 кГц поступают на мультиплексор DD6.1, который использован в качестве узла автоматического выбора поддиапазона.

Основной узел измерения – одновибратор, собранный на элементах DD5.3, DD5.4, длительность импульса которого напрямую зависит от подключенного к нему конденсатора. Принцип измерения емкости – подсчет количества импульсов за время работы одновибратора. На элементах DD5.1, DD5.2 собран узел, предотвращающий дребезг контактов кнопки «Старт измерения». Ну и последняя часть схемы — четырехразрядная линейка двоично-десятичных счетчиков DD9 — DD12 с выводом на четыре семисегментных индикатора.

Рассмотрим алгоритм работы измерителя. При нажатии на кнопку SB1 двоичный счетчик DD8 обнуляется и переключает узел диапазона (мультиплексор DD6.1) на самый нижний диапазон измерения – 0.010 – 10.00 мкФ. При этом на один из входов электронного ключа DD1.3 поступают импульсы частотой 1 МГц. На второй вход этого же ключа проходит разрешающий сигнал с одновибратора, длительность которого прямо пропорциональна подключенной к нему емкости измеряемого конденсатора.

Таким образом на счетную декаду DD9…DD12 начинают поступать импульсы с частотой 1 МГЦ. Если происходит переполнение декады, то сигнал переноса с DD12 увеличивает показания счетчика DD8 на единицу и разрешает запись нуля в триггер DD7 по входу D. Этот нуль включает формирователь DD5.1, DD5.2 а он в свою очередь сбрасывает счетную декаду, снова устанавливает DD7 в «1» и перезапускает одновибратор. Процесс повторяется, но на счетную декаду через коммутатор теперь поступает частота 100 кГц (включился второй диапазон).

Если до завершения импульса с одновибратора счетная декада снова переполнилась, то опять происходит смена диапазона. Если одновибратор отключился раньше, то счет останавливается и на индикаторе можно прочитать значение подключенной для измерения емкости. Последний штрих – блок управления десятичной точкой, которая и указывает текущий поддиапазон измерения. Его функции выполняет вторая часть мультиплексора DD6, которая засвечивает нужную точку в зависимости от включенного поддиапазона.

В качестве индикаторов в схеме используются вакуумные люминесцентные индикаторы ИВ6, поэтому блок питания измерителя должен выдавать два напряжения: 1 В для накала и +12 В для анодного питания ламп и микросхем. Если индикаторы заменить ЖКИ, то можно обойтись одним источником +9В, применение же светодиодных матриц невозможно из-за малой нагрузочной способности микросхем DD9…DD12.

В качестве калибровочного резистора R8 лучше применить многооборотный, поскольку именно от точности калибровки будет зависеть величина погрешности измерения прибора. Остальные резисторы могут быть МЛТ-0.125. По поводу микросхем — в приборе можно использовать любую из серий К1561, К564, К561, К176, но следует иметь в виду, что 176 серия очень неохотно работает с кварцевым резонатором (DD1).

Настройка прибора достаточно проста, но выполнить ее следует с особой тщательностью.

  • Временно отключить кнопку SB1 от DD8 (вывод 13).
  • В точку соединения R3 с R2 подать прямоугольные импульсы частотой примерно 50-100 Гц (подойдет любой самый простой генератор на логической микросхеме).
  • На место измеряемого конденсатора подключить образцовый, емкость которого известна и лежит в диапазоне 0.5 – 4 мкФ (к примеру, К71-5В 1 мкф±1%). Если есть возможность, то емкость лучше измерить с помощью измерительного моста, но можно понадеяться и на емкость, указанную на корпусе. Здесь нужно иметь в виду, что как точно вы откалибруете прибор, так он вам и будет в будущем измерять.
  • С помощью подстроечного резистора R8 выставить показания индикаторов как можно точнее по соответствию с емкостью эталонного конденсатора. После калибровки подстроечный резистор лучше законтрить каплей лака или краски.

По материалам «Радиолюбитель» №5, 2001г.

Из заголовка статьи понятно, что сегодня речь пойдет о приборе для измерения ёмкости конденсаторов. Не в каждом простом мультиметре есть данная функция. А ведь при изготовлении очередной самоделки мы очень часто задумываемся: будет ли она работать, исправны ли конденсаторы, которые мы применили, как их проверить.Да и просто в процессе ремонта данный прибор будет необходим. Проверить на целостность электролитический конденсатор, конечно, можно при помощи тестера. Но мы узнаем: живой он или нет, а вот определить ёмкость, насколько он сухой, мы не сможем.

В некоторых дешевых мультиметрах, которые присутствуют сейчас на рынке, имеется эта функция. Но предел измерения ограничен цифрой в 200 микрофарад. Что явно мало. Нужно хотя бы четыре тысячи микрофарад. Но такие мультиметры стоят на порядок выше. Поэтому я наконец-то решил купить измеритель ёмкости конденсаторов . Выбирал самый дешевый с приемлемыми характеристиками. Остановил свой выбор на XC6013L:

Поставляется это устройство в красивой коробке. Правда, на коробке изображение другого мультиметра:

А сверху наклейка с моделью данного прибора, наверно, у китайцев не хватает коробок:

Прибор заключён в защитный желтый кожух из мягкой пластмассы, похожей на резину. В руках чувствуется увесистость, что говорит о серьезности прибора. С нижней стороны имеется откидная подставка, которая многим может и не пригодиться:

Питается измеритель ёмкости от батарейки напряжением 9 вольт типа крона, которая поставляется в комплекте:

Характеристики прибора просто великолепны. Он может производить измерения от 200 пикофарад до 20 тысяч микрофарад. Что вполне достаточно для радиолюбительских целей:

Сверху прибора расположился большой и информативный жидкокристаллический дисплей. Под ним находятся две кнопки. Слева — красная кнопка, при помощи которой можно зафиксировать на дисплее текущее показание ёмкости. А справа — синяя кнопка, которая очень порадовала, — подсветкой экрана, что, несомненно, является плюсом данного прибора. Между кнопками имеется коннектор для измерения малогабаритных конденсаторов. Правда, проверить бушные конденсаторы, выпаянные из плат доноров, не получается, так как контактные площадки расположены достаточно глубоко. Поэтому данным коннектором можно воспользоваться, только проверяя конденсаторы с длинными выводами:

Под селектором выбора диапазонов измерений находится коннектор для подключения щупов. Кстати, щупы выполнены из такого же материала, как защитный кожух прибора, наощупь они довольно-таки мягкие:

Там же находится, несомненно, самая важная функция прибора — это установка нулевых показаний при измерении ёмкостей в разряде пикофарад. Что наглядно видно на следующих двух фотографиях. Здесь умышленно извлечен один щуп и при помощи регулятора выставлен ноль:

Здесь щуп поставлен на место. Как видите, ёмкость щупов влияет на показания. Теперь достаточно при помощи регулятора выставить ноль и произвести измерения, что будет достаточно точно:

Теперь давайте протестируем прибор в работе и посмотрим, на что он способен.

Тестируем измеритель ёмкости конденсаторов

Для начала будем проверять конденсаторы заведомо исправные, новые и извлечённые из плат доноров. Первым будет подопытный на 120 микрофарад. Это новый экземпляр. Как видите, показания слегка занижены. Кстати, таких конденсаторов у меня штуки 4, и ни один не показал 120 микрофарад. Возможна погрешность прибора. А может, сейчас делают одну некондицию:

Вот одна тысяча микрофарад, весьма точно:

Две тысячи двести микрофарад, тоже неплохо:

А вот десять микрофарад:

Ну а теперь сто микрофарад, очень хорошо:

Давайте посмотрим на показания прибора, которые он покажет при проверке дефектных конденсаторов, которые были извлечены во время ремонта . Как видите, разница ощутима:

Вот такие получились результаты. Конечно, в некоторых случаях неисправность электролитического конденсатора видна визуально. Но в большинстве случаев без прибора обойтись сложно. К тому же я тестировал данный прибор на двух платах, проверяя конденсаторы, не выпаивая их. Устройство показало неплохие результаты, только в некоторых случаях нужно соблюдать полярность. Поэтому я советую купить такой прибор, и вы сможете измерять ёмкость конденсаторов своими руками.

В данной статье мы дадим наиболее полную инструкцию, которая позволит сделать измеритель ёмкости конденсаторов своими руками, без помощи квалифицированных мастеров.

К сожалению, аппаратура не редко выходит из строя. Причина чаще всего одна – появление электролитического конденсатора. Все радиолюбители знакомы с так называемым «высыханием», которое появляется из-за нарушения герметичности корпуса прибора. Возрастает реактивное сопротивление из-за снижения номинальной емкости.

Далее, во время эксплуатации начинают происходить электрохимические реакции, они разрушают стыки выводов. В результате контакты нарушаются, образовывая контактное сопротивление, которой исчисляется, порой десятками Oм. То же самое будет происходить при подключении к рабочему конденсатору резистора. Наличие этого самого последовательного сопротивления скажется негативно не работе электронного устройства, в схеме будет искажаться вся работа конденсаторов.

Из-за сильнейшего влияния сопротивления в диапазоне три-пять Ом, приходят в негодность импульсные источники питания, ведь в них перегорают дорогостоящие транзисторы, а также микросхемы. Если детали при сборке прибора были проверены, а при монтаже не допущены ошибки, то с его наладкой не возникнет проблем.

Кстати, предлагаем Вам присмотреть себе новый паяльник на Алиэкспресс — ССЫЛКА (отличные отзывы). Либо присмотреть себе что-нибудь из паяльного оборудования в магазине «ВсеИнструменты.ру» — ссылка на раздел с паяльниками .

Схема, принцип работы, устройство

Данная схема используется с применением операционного усилителя. Прибор, который мы собираемся сделать своими руками, позволит производить измерения ёмкости конденсаторов в диапазоне от пары пикoфарад до одного микрофарада.

Давайте разберемся с приведенной схемой :

  • Поддиапазоны . У агрегата есть 6 «поддиапазонов», у них высокие границы равняются 10, 100; 1000 пф, а также 0,01, 0,1 и 1 мкф. Отсчитывается емкость по измерительной сетке микроамперметра.
  • Назначение . Основой работы прибора является замер переменного тока, он проходит сквозь конденсатор, который необходимо исследовать.
  • На усилителе DА 1 находится генератор импульсов. Колебания их повтора подчиняется емкости С 1- С 6 конденсаторов, а также позиции тумблера «подстроечного» резистора R 5. Частота будет переменной от 100 Гц до 200 кГц. Подстроечному резистору R 1 определяем соразмерную модель колебаний при выходе генератора.
  • Указанные на схеме диоды, как D 3 и D 6, резисторы (налаженные) R 7- R 11, микроамперметр РА 1, составляют сам измеритель переменного тока. Внутри микроамперметра сопротивление обязано составлять не больше 3 кОм, с целью, чтобы погрешность при замере не превысила десяти процентов на диапазоне до 10 пФ.
  • К другим поддиапазонам параллельно Р A 1 подсоединяют подстроечные резисторы R 7 – R 11. Нужный измерительный поддиапазон настраивают при помощи тумблера S А 1. Одна категория контактов переключает конденсаторы (частотозадающие) С 1 и С 6 в генераторе, второй переключает в индикаторе резисторы.
  • Чтобы прибор получал энергию, ему нужен 2-полярный стабилизированный источник (напряжение от 8 до 15 В). У частотозадающего конденсатора могут на 20 % разниться номиналы, однако сами они обязаны иметь высокую стабильность временную и температурную.

Конечно, для обычного человека, не разбирающегося в физике, это всё может показаться сложным, но вы должны понимать, чтобы сделать измеритель ёмкости конденсаторов своими руками, нужно обладать определенными знаниями и навыками. Далее поговорим о том, как наладить прибор.

Наладка измерительного прибора

Чтобы произвести правильную наладку, следуйте инструкции:

  1. Сперва достигается симметричность колебаний при помощи резистора R 1. «Бегунок» у резистора R 5 находится посередине.
  2. Следующим действием будет подключение эталонного конденсатора 10 пф к клеммам, отмеченным значком сх. При помощи резистора R 5, переставляют стрелу микроамперметра на соответственную шкалу ёмкости эталонного конденсатора.
  3. Далее проверяется форма колебания при выходе генератора. Тарировка проводится на всех поддиапазонах, здесь применяют резисторы R 7 и R 11.

Механизм устройства может быть разным. Параметры размеров зависят от типа микроамперметра. Каких-то особенностей при работе с прибором не выделяется.

Создание разных моделей измерителей

Модель серии AVR

Сделать такой измеритель можно на базе переменного транзистора. Вот инструкция:

  1. Подбираем контактор;
  2. Замеряем выходное напряжение;
  3. отрицательное сопротивление в измерителя емкости не больше 45 Ом;
  4. Если проводимость 40 мк, то перегрузка составит 4 Ампера;
  5. Для повышения точности измерения, нужно использовать компараторы;
  6. Также есть мнение, что лучше использовать только открытые фильтры, так как для них не страшны импульсные помехи в случае большой загруженности;
  7. Также рекомендуется использовать полюсные стабилизаторы, а вот для модификации устройства не подходят только сеточные компараторы;

Перед тем, как включать измеритель ёмкости конденсаторов, нужно выполнить замер сопротивления, который должен быть примерно 40 Ом для хорошо сделанных устройств. Но показатель может отличаться, в зависимости от частотности модификации.

  • Модуль на базе PIC16F628A может быть регулируемого типа;
  • Лучше не устанавливать фильтры высокой проводимости;
  • Перед тем, как начнем паять, нужно проверить выходное напряжение;
  • Если сопротивление слишком высокое, то меняем транзистор;
  • Применяем компараторы для преодоления импульсных помех;
  • Дополнительно используем проводниковые стабилизаторы;
  • Дисплей может быть текстовым, что проще всего и весьма удобно. Ставить их нужно через канальные порты;
  • Далее с помощью тестера настраиваем модификацию;
  • Если показатели емкости конденсаторов слишком высокие, то меняем транзисторы с малой проводимостью.
  • Более подробно о том, как сделать измеритель ёмкости конденсаторов своими руками можно узнать из видео ниже.

    Видео инструкции