Схема репродукции вирусов. Ретровирусы. Введенные в организм вакцинные штаммы должны вызывать не заболевание, а особое, качественно новое состояние - так называемый вакцинальный процесс

Вирусы воспроизводят себе подобные частицы в таком огромном количестве и столь своеобразным способом, что это явление стали именовать репродукцией, так как здесь копируются молекулы нуклеиновых кислот и, согласно заключенной в них генетической информации, синтезируются вирусные белки.

При большом разнообразии механизмов репродукции вирусов общим для всех видов является:

  1. источником мономеров для синтеза нуклеиновых кислот служат нуклеотиды клетки;
  2. источником мономеров для синтеза вирусных белков служат аминокислоты (аминоацил тРНК) клетки;
  3. синтез белков всех вирусов осуществляется на клеточных рибосомах;
  4. источник энергии для биосинтетических процессов при репродукции всех вирусов - аденазинтрифосфорная кислота (АТФ), вырабатываемая в митохондриях клетки;
  5. дисъюнктивный (разобщенный во времени и в пространстве) биосинтез структурных компонентов вирусов. Так, нуклеиновая кислота вируса может реплицироваться, например, в ядре клетки, вирусный белок синтезируется в цитоплазме, а сборка цельных вирионов или нуклеокапсидов может происходить на внутренней поверхности цитоплазматической мембраны. Наконец, сложный липопротеиновый суперкапсид может приобретаться вирусами в процессе почкования;
  6. репликацию нуклеиновых кислот вирусов осуществляют ферменты - полимеразы (ДНК-полимеразы и РНК-синтетазы), которые могут быть клеточными полимеразами, присутствующими в клетке до ее заражения вирусом, либо вирусспецифическими, появляющимися после заражения клетки вирусом, так как биосинтез их закодирован в структуре нуклеиновых кислот самих вирусов или они находятся в вирионе вируса;
  7. точность копирования молекул нуклеиновых кислот при их репликации обеспечивается матричным механизмом и принципом комплементарности.

Взаимодействие вируса с клеткой хозяина - сложный и многостадийный процесс. В результате такого взаимодействия могут развиваться три основные формы клеточной инфекции: продуктивная, абортивная и интегративная.

Продуктивная форма чаще носит литический характер, т. е. заканчивается гибелью и лизисом инфицированной клетки, что происходит после полной сборки дочерней популяции инфицированных вирусных частиц. Гибель клетки могут вызвать следующие факторы: раннее подавление синтеза клеточных белков, накопление повреждающих клетку вирусных компонентов; повреждение лизосом и высвобождение их ферментов в цитоплазму. Такая форма инфекции наблюдается у многих вирусов.

Абортивная форма не завершается образованием инфекционных вирусных частиц или они образуются в гораздо меньшем количестве, чем при продуктивной инфекции. Абортивная инфекция может возникать при следующих обстоятельствах: заражение чувствительных клеток дефектным вирусом, заражение чувствительных клеток в неразрешающих условиях, т. е. при резком изменении условий, при которых происходит инфекционный процесс, заражение нечувствительных клеток стандартным вирусом. В результате клетка либо погибает без продукции инфекционного вируса, либо инфекция прерывается на определенном этапе.

Дефектным называется такой вирус, который не способен проявить все генетические функции, необходимые для образования инфекционного потомства. Существуют дефектные вирусы и дефектные вирусные частицы. Дефектными называют такие вирусы, которые репродуцируются лишь в присутствии вируса-помощника, например аденоассоциированный вирус (семейство парвовирусов), дающий потомство только в присутствии аденовируса - помощника. Дефектные вирусные частицы лишены части генетического материала (от 10 до 90 % генома). Дефектные частицы интерферируют при репродукции с инфекционными вирусными частицами и поэтому их называют дефектными интерферирующими частицами (ДИЧ). Попадая в клетку вместе с инфекционными вирусными частицами, они конкурируют с ними за факторы репродукции и препятствуют образованию инфекционного потомства. Большое количество ДИЧ проявляется при серийном пассивировании вируса с высокой множественностью заражения.

Интегративная форма не приводит к гибели клетки. Нуклеиновая кислота вируса, встроенная в геном клетки-хозяина, функционирует как составная часть клеточного генома. Клетка может сохранить нормальные функции и при ее делении вирусные последовательности могут переходить в геном дочерних клеток. Интеграция может привести к неопластической трансформации клеток. Такие клетки приобретают способность к неограниченному делению.

Интегративная форма инфекции возможна для нескольких семейств: ретровирусов, аденовирусов, вирусов герпеса, паповавирусов и др.

Процесс репродукции вирусов может быть условно разделен на две фазы. Первая фаза охватывает события, которые ведут к адсорбции и проникновению вируса в клетку, освобождению его внутреннего компонента и модификации вируса таким образом, что он способен вызвать инфекцию. Соответственно первая фаза включает три стадии.

I. Адсорбция вируса на клетках.

II. Проникновение в клетки.

III. Раздевание вируса в клетке.

Эти стадии направлены на то, чтобы вирус был доставлен в соответствующие клеточные структуры и его внутренний компонент был освобожден от защитных оболочек. Как только эта цель достигнута, начинается вторая фаза репродукции, в течение которой происходит экспрессия вирусного генома. Эта фаза включает в себя пять стадий:

I. Транскрипция.

II. Трансляция иРНК.

III. Репликация генома.

IV. Сборка вирусных компонентов.

V. Выход вируса из клетки.

Первая фаза репродукции . I. Адсорбция вирионов на поверхности клетки . Прикрепление вирусных частиц к поверхности клетки-хозяина - первая стадия инфекционного процесса. Начальный контакт вируса с клеткой происходит в результате случайного столкновения по типу броуновского движения.

В основе адсорбции лежат два механизма.

Первый из них - неспецифический. Определяется силами электростатического взаимодействия, возникающими между разнозаряженными группами, расположенными на поверхности клетки и вируса. В этом процессе участвуют заряженные положительно аминные группы вирусного белка и кислые фосфатные, сульфатные и карбоксильные группы клеточной поверхности, имеющие отрицательный заряд.

Второй - специфический. Специфичность связи между вирусом и клеткой обусловлена комплементарными клеточными и вирусными рецепторами.

Процесс адсорбции возможен при наличии соответствующих рецепторов на поверхности клетки и «узнающих» их субстанций на поверхности вируса. Узнавание клеточных рецепторов вирусными белками (рецепторами), ведущее к прикреплению вирусной частицы к клетке, является высокоспецифическим процессом. Белки на поверхности вируса, узнающие специфические группировки на плазматической мембране клетки и обусловливающие прикрепление к ним вирусной частицы, называются прикрепительными белками (рецепторами). Рецепторы могут иметь разную химическую природу и представлять собой белки, углеводный компонент белков и липидов. Рецепторами для вирусов гриппа и парамиксовирусов является сиаловая кислота в составе гликопротеидов и гликолипидов, для рабдо — и реовирусов - также углеводный компонент в составе белков и липидов, для пикорна — и аденовирусов - белки, для некоторых вирусов - липиды. Специфические клеточные рецепторы играют роль не только в прикреплении вирусной частицы к клеточной поверхности. Они определяют дальнейшую судьбу вирусной частицы, ее внутриклеточный транспорт и доставку в определенные участки цитоплазмы и ядра, где вирус способен инициировать инфекционный процесс. Вирус может прикрепиться и к неспецифическим рецепторам и даже проникнуть в клетку, однако только прикрепление к специфическому рецептору приведет к возникновению инфекции.

Прикрепление вирусной частицы к клеточной поверхности вначале происходит путем образования единичной связи вирусной частицы с рецептором. Однако такое прикрепление непрочно, и вирусная частица может легко оторваться от клеточной поверхности (обратимая адсорбция). Для того чтобы наступила необратимая адсорбция, должны появиться множественные связи между вирусной частицей и многими молекулами рецепторов, т. е. должно произойти стабильное мультивалентное прикрепление. Количество молекул клеточных рецепторов в участках адсорбции может доходить до 3000.

Количество специфических рецепторов на поверхности клетки колеблется между 10 4 и КР на одну клетку. Рецепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев, и этим может определяться чувствительность организма к данному вирусу. Например, вирусы полиомиелита адсорбируются только на клетках приматов. Рецепторы для других вирусов, напротив, широко представлены на поверхности клеток различных видов, как, например, рецепторы для ортомиксо — и ларамиксовирусов, представляющие собой сиалилсодержащие соединения, имеют относительно широкий диапазон клеток, на которых может происходить адсорбция вирусных частиц. Рецепторами для ряда тогавирусов обладают клетки широкого круга хозяев: эти вирусы могут адсорбироваться и инфицировать клетки как позвоночных, так и беспозвоночных. Вирусные ДНК и РНК обладают способностью заражать более широкий круг хозяев, чем вирусы. Максимальная скорость адсорбции вируса наблюдается лишь при определенном соотношении концентрации вируса и клеток, влиянии pH, температуры, ионного состава среды.

Адсорбция вируса на клетках происходит в широком диапазоне температур. Она протекает нормально в присутствии катионов и подавляется веществами, несущими высокий отрицательный заряд (сульфатированные полисахариды, гепарин). Для ряда оболочечных вирусов известна обратная закономерность.

Процесс адсорбции состоит из двух быстро следующих друг за другом периодов: обратимого и необратимого. Период обратимого прикрепления может закончиться десорбцией. При длительном контакте вируса с клеткой никакие воздействия не позволяют освободить адсорбированный вирус, наступает стадия необратимой адсорбции. Вирус ящура, например, адсорбируется клетками культуры почки свиней при 2-4 и 37 °С, однако при низкой температуре адсорбция вируса обратима и инфицирования клеток не происходит, так как вирус находится на поверхности клеток и легко может быть десорбирован раствором версена без нарушения целостности клеток, тогда как при 37 °С через 80-90 мин наступала полная необратимая адсорбция вируса. Количество адсорбированного вируса и число инфицированных клеток в основном зависят от множественности заражения и продолжительности адсорбции.

Адсорбированные вирусные частицы могут иметь различную судьбу: большая часть их элюируется, при этом они повреждаются, так как теряют способность к реадсорбции другими клетками и не инфицируют их; другая часть вирусных частиц проникает в клетку и подвергается дезинтеграции; небольшая часть инфекционных вирусных частиц, связанных с клеткой, остается интактной.

Прикрепительные белки могут находиться в составе уникальных органелл, таких, как структуры отростка у Т-бактериофагов или фибры у аденовирусов, которые хорошо видны в электронном микроскопе; могут формировать морфологически менее выраженные, но не менее уникальные структуры белковых субъединиц на поверхности вирусных мембран, как, например, шипы у оболочечных вирусов, «корону» у коронавирусов.

Просто организованные вирусы животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов эти белки входят в состав суперкапсида и представлены множественными молекулами. Например, у вируса леса Семлики (α-вирус) имеется 240 молекул гликопротеида в одном вирионе, у вируса гриппа - 300-450 гемагглютинирующих субъединиц, у аденовируса - 12 фибров.

Спектр чувствительности клеток к вирусам в значительной степени определяется наличием соответствующих рецепторов. Прикрепление вируса к клетке - непременное, но недостаточное условие для инфицирования, которое определяется прохождением последующих стадий репродукции вируса.

II. Проникновение вируса в клетку . В настоящее время известно два механизма проникновения вируса в клетку: путем рецепторного эндоцитоза и путем слияния вирусной и клеточной мембран. Оба эти механизма не исключают, а дополняют друг друга.

Рецепторный эндоцитоз происходит в специализированных участках плазматической мембраны, где имеются специальные ямки, на дне которых находятся специальные рецепторы. Ямки обеспечивают быструю инвагинацию и образование внутриклеточных вакуолей (за 1 мин образуется более 2 тыс. вакуолей), которые сливаются с цитоплазматическими вакуолями, образуя рецептосомы, а они могут сливаться с лизосомами. Эндоцитоз обеспечивает внутриклеточный транспорт вириона в составе вакуоли, освобождая вирусную частицу в соответствующих внутриклеточных участках. Так, например, ядерные вирусы попадают в ядро, а реовирусы - в лизосомы. Большинство вирусов животных проникает в клетку путем эндоцитоза.

Слияние вирусных и клеточных мембран . У оболочечных вирусов слияние обусловлено точечным взаимодействием вирусного белка путем слияния с липидами клеточной мембраны, в результате вирусная липопротеидная оболочка интегрирует с клеточной мембраной.

У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран, в результате внутренний компонент проходит через мембрану и вовнутрь клетки проникает только нуклеопротеид вириона. При данном способе проникновения функционально активный вирусный нуклеопротеид освобождается из вириона в период его прохождения внутрь клетки через плазматическую мембрану, т. е. одновременно происходит проникновение и «раздевание» вириона. Белком слияния у вирусов является один из поверхностных белков, так, у парамиксовирусов это белок (F-белок), у вируса гриппа функцию белка слияния выполняет малая гемагглютинирующая субъединица (НА2).

Большинство вирусов вызывает слияние мембран при низком значении pH - от 5,0 до 5,75.

III. Раздевание - депротеинизация вируса . Проникшие в клетку вирусные частицы должны раздеться для того, чтобы вызвать инфекционный процесс. Смысл раздевания заключается в удалении вирусных защитных оболочек, которые препятствуют экспрессии вирусного генома. В результате раздевания освобождается внутренний компонент вируса, который способен вызвать инфекционный процесс. Раздевание сопровождается рядом характерных особенностей: в результате распада вирусной частицы исчезает инфекционная активность, в ряде случаев появляется чувствительность к нуклеазам, возникает устойчивость к нейтрализующему действию антител, теряется фоточувствительность при использовании ряда препаратов.

Конечными продуктами раздевания являются сердцевины, нуклеокапсиды или нуклеиновые кислоты. Для ряда вирусов было показано, что продуктом раздевания являются не голые нуклеиновые кислоты, а связанные с внутренним вирусным белком. Например, конечный продукт раздевания пикорнавирусов - РНК, ковалентно связанная с белком VPg, конечный продукт раздевания аденовирусов, вируса полиномы и SV40 - ДНК, ковалентно связанная с одним из внутренних вирусных белков.

В ряде случаев способность вирусов вызвать инфекционный процесс определяется возможностью их раздевания в клетке данной системы. Тем самым эта стадия является одной из ограничивающих инфекцию.

Раздевание ряда вирусов происходит в специализированных участках внутри клетки (лизосомах, структурах аппарата Гольджи, околоядерном пространстве, ядерных порах на ядерной мембране). При слиянии вирусной и клеточной мембран проникновение в клетку сочетается с раздеванием.

Раздевание и внутриклеточный транспорт - взаимосвязанные процессы: при нарушении правильного внутриклеточного транспорта к местам раздевания вирусная частица попадает в лизосому и разрушается лизосомальными ферментами.

Раздевание вирусной частицы осуществляется постепенно в результате серии последовательных реакций. Например, в процессе раздевания пикорнавирусы проходят ряд стадий с образованием промежуточных субвирусных частиц с размерами от 156S до 12S. Раздевание аденовирусов происходит в цитоплазме и ядерных порах и имеет по крайней мере три стадии: 1) образование субвирусных частиц с большей плотностью, чем вирионы; 2) образование сердцевин, в которых отсутствует 3 вирусных белка; 3) образование ДНК-белкового комплекса с терминальным белком.

Вирусы оспы раздеваются в две стадии: на первой - ферменты хозяина удаляют наружное покрытие, а на второй - для освобождения вирусной ДНК из сердцевины требуется участие продуктов вирусных генов («раздевающий фермент»), синтезированных после заражения.

Вторая фаза репродукции . I. Транскрипция . Это переписывание информации с ДНК на РНК по законам генетического кода. Осуществляется с помощью специального фермента (РНК-полимеразы), который связывает нуклеотиды путем образования 3’-5′-фосфодиэфирных мостиков. При инициации транскрипции РНК-полимераза связывается со специальным участком ДНК (промотором), удвоенные спирали ДНК разъединяются и функционируют как матрицы, к которым присоединяются комплементарные нуклеотиды благодаря спариванию комплементарных оснований (аденин с тимином, урацил с аденином, гуанин с цитазином и цитазин с гуанином). Таким образом, происходит постепенное удлинение (элонгация) цепи НИК. Терминация (прекращение роста) цепи ГПК происходит на специфических участках ДНК, называемых терминаторами. При этом процессе принимают участие и специальные белки.

Стратегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке:

ДНК →(транскрипция)→ РНК →(трансляция)→ белок.

ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся папова-, аденовирусы, вирусы герпеса. ДНК-содержащие вирусы, репродукция которых происходит в цитоплазме, не могут использовать клеточные ферменты, находящиеся в ядре. Транскрипция их генома осуществляется вирусспецифическим ферментом - ДНК-полимеразой, которая проникает в клетку в составе вириона. К этим вирусам относятся вирусы оспы и иридовирусы.

РНК → белок.

К этой группе вирусов относятся пикорна-, тога-, коронавирусы. У них нет необходимости в акте транскрипции для синтеза вирусспецифических белков. Поэтому транскрипцию как самостоятельный процесс у этих вирусов не выделяют.

Б. У вирусов, геном которых не может выполнять функцию иРНК (минус-нитевые вирусы). В клетке синтезируется комплементарная геному РНК, которая и является информационной. Передача генетической информации у этих вирусов осуществляется по формуле:

РНК → РНК → белок.

У этих вирусов транскрипция выделена как самостоятельный процесс в инфекционном цикле. К ним относятся две группы вирусов животных:

  • вирусы, геном которых представлен односпиральной РНК: ортомиксо-, парамиксо-, рабдо-, буньявирусы;
  • вирусы, геном которых представлен двуспиральной РНК. Среди вирусов животных к ним относятся реовирусы.

В клетке нет фермента, который может полимеризовать нуклеотиды на матрице РНК. Эту функцию выполняет вирусспецифический фермент - РНК-зависимая PHK-полимераза, или транскриптаза, которая находится в составе вирионов и вместе с ними проникает в клетку.

В. Среди РНК-содержащих вирусов животных есть семейство ретровирусов, которые имеют уникальный путь передачи генетической информации. РНК этих вирусов переписывается на ДНК, ДНК интегрирует с клеточным геномом и в его составе переписывается на РНК, которая обладает информационными функциями. Путь передачи генетической информации в этом случае осуществляется по более сложной формуле: РНК → ДНК → PHК → белок

В составе этих вирусов есть уникальный вирусспецифический фермент, который переписывает РНК на кДНК. Этот процесс называется обратной транскрипцией, а фермент - обратная транскриптаза, или ревертаза. Тот же фермент синтезирует нить ДНК на матрице ДНК. Двуспиральная ДНК после замыкания в кольцо интегрирует с клеточным геномом, и транскрипцию интегрированной ДНК в составе клеточных геномов осуществляет клеточная ДНК-зависимая РНК-полимераза.

Транскрипция вирусного генома строго регулируется на протяжении инфекционного цикла. Регуляция осуществляется как клеточными, так и вирусспецифическими механизмами. У некоторых вирусов, в основном ДНК-содержащих, существует три периода транскрипции: сверхранний, ранний и поздний. К ним относятся вирусы оспы, герпеса, папова-, адено — и иридовирусы. В результате сверхранней и ранней транскрипции избирательно считываются сверхранние и ранние гены с образованием сверхранних или ранних иРНК. При поздней транскрипции считывается другая часть вирусного генома - поздние гены с образованием поздних и PHК. Количество поздних генов обычно превышает количество ранних генов. Многие сверхранние гены являются генами для неструктурных белков (ферментов и регуляторов транскрипции) и репликации вирусного генома. Напротив, поздние гены обычно являются генами для структурных белков. Обычно при поздней транскрипции считывается весь геном, но с преобладанием транскрипции поздних генов.

Фактором регуляции транскрипции у ядерных вирусов является транспорт транскриптов из ядра в цитоплазму, к месту функционирования иРНК - полисомам.

Продуктом сверхранней транскрипции вирусов герпеса являются α-белки. Функция одного или нескольких из них необходима для транскрипции следующей группы генов, кодирующих β-белки. В свою очередь, β-белки включают транскрипцию последней группы поздних генов, кодирующих γ-белки. Такой тип регуляции получил название «каскадный».

II. Трансляция . Эго - процесс перевода генетической информации, содержащейся в иРНК на специфическую последовательность аминокислот в синтезируемых вирусспецифических белках. Синтез белка в клетке происходит в результате трансляции иРНК на рибосомах. В рибосомах идет слияние потока информации (в иРНК) с потоком аминокислот, которые приносят транспортные РНК (тРНК). В клетке существует большое количество разнообразных тРНК. Для каждой аминокислоты должна быть своя тРНК.

Молекула тРНК представляет собой односпиральную РНК со сложной структурой в виде кленового листа.

Связывание конкретной тРНК и аминокислоты осуществляет фермент аминоацилсинтетаза. Один конец тРНК связывается с аминокислотой, а другой - с нуклеотидами иРНК, которым они комплементарны. Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», а комплементарные кодону три нуклеотида на тРНК называются «антикодоном».

Процесс транскрипции состоит из трех фаз: инициации элонгации, терминации.

Инициация трансляции - наиболее ответственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» (кэп) на 5′-конце и скользит к 3′-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторными кодонами являются кодоны АУГ (аденин, урацил, гуанин), кодирующие метионин. С метионина начинается синтез всех полипептидных цепей. Специфическое узнавание рибосомой вирусной и РНК осуществляется за счет вирусспецифических инициаторных факторов.

Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необходимые для начала трансляции. Это - несколько молекул белка, которые называются «инициаторные факторы». Их, по крайней мере, три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК. В результате формируется комплекс, необходимый для инициации трансляции, который называется «инициаторным комплексом». В инициаторный комплекс входят: иРНК; малая рибосомальная субъединица; аминоацил-тРНК, несущая инициаторную аминокислоту; инициаторные факторы; несколько молекул ГТФ (гуанозинтрифосфат).

В рибосоме осуществляется слияние потока информации с потоком аминокислот. Вхождение аминоацил-тРНК в А-центр большой рибосомальной субъединицы является следствием узнавания, а ее антикодон взаимодействует с кодоном иРНК, находящейся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидильный центр (П-центр), и ее аминокислота присоединяется к инициаторной аминокислоте с образованием первой пептидной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспорте специфических аминокислот. На ее место из A-центра в П-центр перебрасывается новая тРНК, и образуется новая пептидная связь. В A-центре появляется вакантный кодон иРНК, к которому немедленно присоединяется соответствующая тРНК, и происходит присоединение новых аминокислот к растущей полипептидной цепи.

Элонгация трансляции - процесс удлинения, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептидной связи. Происходит постоянное протягивание нити иРНК через рибосому и «декодирование» заложенной в ней генетической информации. Часто иРНК функционирует одновременно на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить, кодируемую данной иРНК.

Терминация трансляции происходит в тот момент, когда рибосома доходит до терминирующего кодона в составе иРНК (УАА, УГА, УАГ). Трансляция прекращается, и полипептидная цепь освобождается из полирибосомы. После окончания трансляции полирибосомы распадаются на субъединицы, которые могут войти в состав новых полирибосом.

Каждая и PHК функционирует на нескольких рибосомах. Группу рибосом, работающих на одной молекуле иРНК, называют полирибосомой или полисомой. Полисомы могут состоять от 4-6 до 20 и более рибосом.

Вирусспецифические полисомы могут быть как свободными, так и связанными с мембранами. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синтезируются на полисомах, связанных с мембранами.

Поскольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных иРНК, каждая из которых кодирует один белок. Таким образом, существуют два способа формирования вирусных белков:

первый - иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функционально активные белки;

второй - иРНК транслируется с образованием зрелых белков или белков, которые лишь незначительно модифицируются после синтеза.

Первый способ трансляции характерен для РНК-содержащих плюс-нитевых вирусов - пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую полипептидную цепь, так называемый полипротеид, который сползает в виде непрерывной ленты с рибосомного «конвейера» и нарезается на индивидуальные белки нужного размера. Нарезание вирусных белков - многоступенчатый процесс, осуществляемый как вирусспецифическими, так и клеточными протеазами.

Второй способ формирования белков характерен для ДНК-содержащих вирусов и большинства РНК-содержащих вирусов. При этом способе синтезируются короткие моноцистронные иРНК в результате избирательной транскрипции одного участка генома (гена). Однако эти вирусы широко используют механизм посттрансляционного нарезания белка.

В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, зрелые функционально активные белки часто неидентичны их вновь синтезированным предшественникам. Широко распространены такие посттрансляционные ковалентные модификации, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирование. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.

Гликозилирование . В составе сложно устроенных PHК — и ДНК-содержащих вирусов имеются белки, содержащие ковалентно присоединенные боковые цепочки углеводов, - гликопротеиды. Гликопротеиды расположены в составе вирусных оболочек и находятся на поверхности вирусных частиц.

Гликозилирование полипептидов - сложный многоступенчатый процесс, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый углеводный остаток присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликозилирования происходят путем последовательного присоединения углеводных остатков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране. Углеводные остатки присоединяются по одному, и только при инициации синтеза олигосахаридной цепи переносится «блок». Окончательное формирование углеводной цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы.

Гликозилирование влияет на транспорт, более того, транспорт неразрывно связан для гликопротеидов со стадийным гликозилированием. Убедительным доказательством этого служит влияние на вирусную репродукцию ингибиторов гликозилирования; они полностью подавляют транспорт полипептидов, не нарушая и не ингибируя их синтеза.

При подавлении гликозилирования соответствующими ингибиторами (аналоги сахаров типа 2-дезоксиглкжозы, антибиотик туникамицин) блокируется сборка вирионов миксо-, рабдо-, α-вирусов или образуются неинфекционные вирионы вирусов герпеса и онковирусов.

Сульфирование . Некоторые белки сложно устроенных РНК — и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с углеводными остатками гликопротеида.

Ацилирование . Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок G вируса везикулярного стоматита, белок HN вируса ньюкаслской болезни и др.) содержат ковалентно связанные 1-2 молекулы жирных кислот.

Нарезание . Многие вирусные белки, и в первую очередь гликопротеиды, приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функциональных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида (Е2 и ЕЗ) вируса леса Семлики), либо с образованием одного функционально активного белка и неактивного фермента, например белки F и HN парамиксовирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеиды, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусами способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.

Фосфорилирование . Фосфопротеиды содержатся практически в составе всех вирусов животных - РНК — и ДНК-содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии. С процессом фосфорилирирования связан механизм активного действия интерферона.

Фосфорилирование белков играет регулирующую роль в транскрипции и трансляции вирусных и PHК, специфическом узнавании вирусных иРНК рибосомой, белок-нуклеиновом и белок-белковом узнавании на стадии сборки вирусных частиц.

III. Репликация . Это - синтез молекул нуклеиновой кислоты, гомологичных геному.

Различные вирусы имеют разные типы вирусного генома. Так, у ДНК-содержащих вирусов различают: двуспиральную линейную ДНК (адено-, герпес-, поксвирусы;), двуспиральную кольцевую ДНК (паповавирусы); односпиральная линейная ДНК (парвовирусы). У РНК-содержащих вирусов различают: двуспиральную сегментированную РНК (реовирусы); односпиральную плюсРНК (пикорна-, кальци-, тога-, флави-, коронавирусы); односпиральную минусРНК (ортомиксо-, парамиксо-, рабдо-, фило-, бунья — вирусы); односпиральную плюсРНК-матрицу для синтеза ДНК-провируса (ретровирусы). Особенности механизма репликации вирусов зависят от типа вирусного генома.

Репликация вирусов в двуспиральной ДНК сходна с репликацией клеточной ДНК. Репликация происходит на расплетенных участках ДНК и идет одновременно на обеих нитях от 5′-конца к 3′-концу. Репликацию осуществляют ДНК-полимеразы. Каждая вновь синтезированная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити.

При репликации вирусов с односпиральной ДНК происходит образование двуспиральных форм, которые представляют собой промежуточные репликативные формы, на минус-нитях которых синтезируются дочерние плюс-нити ДНК.

У вирусов, геном которых представлен односпиральной РНК, ее репликация происходит по следующей схеме: на вирионной РНК синтезируется комплементарная ей РНК (образуется репликативная форма РНК), затем на комплементарной РНК синтезируется комплементарная ей, но идентичная исходной вирусная РНК.

В клетках нет ферментов, способных осуществлять репликацию РНК, поэтому ферменты, участвующие в репликации, всегда вирусспецифические.

Репликация двуспиральных вирусных РНК происходит следующим образом: на минус-нити геномной двуспиральной РНК синтезируются односпиральные плюс-нити, которые являются и PH К и матрицей для синтеза минус-нитей, в результате образуются двуспиральные вирусные РНК.

Репликация односпиральной РНК ретровирусов происходит с участием фермента обратной транскриптазы. Вначале на вирусной РНК синтезируется комплементарная ей минус-нить ДНК, а затем (после разрушения РНК) на ней синтезируется плюс-нить ДНК. Двуспиральная ДНК интегрирует в хромосому клетки. Вирусспецифическая ДНК, встроенная в клеточный геном, транскрибируется с образованием вирусной РНК, которая вначале выполняет функции иРНК, направляя синтез вирусспецифических белков, а затем соединяется с ними, формируя новое поколение вирионов.

Синтез РНК может осуществляться по одному из двух механизмов: 1) консервативному, при котором полинуклеотидные цепи, входящие в состав репликативной формы РНК, сохраняются (консервируются) и не переходят в односпиральную форму; 2) образование плюс-нитей может происходить асимметрическим полуконсервативным путем, когда вновь строящаяся плюс-нить вытесняет ранее синтезированную плюс-нить из репликативной формы РНК.

IV. Сборка вирусных частиц . Синтез компонентов (нуклеиновых кислот и белков) вирусных частиц в клетке разобщен и может протекать в разных структурах ядра и цитоплазмы. Как только их концентрация достигнет определенного уровня, начинается сборка вирионов. При таком дисъюнктивном способе репродукции образование вирусных частиц возможно лишь при специфическом узнавании вирусных нуклеиновых кислот и белков и самопроизвольного их соединения друг с другом, т. е. вирусные компоненты способны к самосборке в результате гидрофобных, ионных, водородных связей и стерического соответствия.

Разнообразие структуры вирусов отражается на способе их формирования и выходе из клетки. У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато - сначала формируются нуклеокапсиды, или сердцевины, с которыми взаимодействуют белки наружных оболочек. Сборка нуклеотидов, сердцевин, провирионов и вирионов происходит в специальных структурах клетки («фабриках»).

Различают две стратегии, используемые вирусами при сборке, созревании и выходе из зараженной клетки. Первая заключается в сборке и созревании вирионов внутри клетки (пикорна-, адено-, реовирусы и др.). Вторая состоит в сочетании завершающей стадии сборки вириона с выходом его из зараженной клетки. Она используется обычно вирусами, имеющими оболочку (тога-, ретро-, герпесвирусы и др.). Образование зрелых вирионов у оболочечных вирусов осуществляется при почковании их нуклеопротеидов через модифицированные участки цитоплазматических или ядерных (герпесвирусы) мембран, в которых клеточные белки заменены вирусспецифическими. Во время этого процесса вновь образовавшийся вирион отпочковывается от клетки.

Дозревание ретровирусов происходит после отпочковывания от плазматической мембраны клетки.

Число инфицированных вирусных частиц, образуемых в одной клетке, зависит от типа вируса, вида клеток, и количество их варьирует очень широко. Считают, что на долю вирусспецифических продуктов приходится от 0,1 до 5 % массы клетки животного, а на бактериофаги - до 40 % массы клетки хозяина. В инфицированных клетках вирусные нуклеиновые кислоты и вирусспецифические белки синтезируются в значительно большем количестве, чем включаются в вирионы.

V. Выход вирусных частиц из клетки . Существует два способа выхода вирусного потомства из клетки: путем взрыва и путем почкования. Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы оказываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортироваться на клеточную поверхность до гибели клетки.

Выход из клетки путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Взаимодействие вируса с клеткой хозяина - это сложный многоступенчатый процесс, который начинается с адсорбции вирусных частиц на рецепторах клетки хозяина и продолжается после их проникновения внутрь клетки. В результате такого взаимодействия развивается либо продуктивная, либо абортивная, либо интегративная форма клеточной инфекции. При п р.о дуктивной форме происходит размножение, точнее репродукция (лат. reproduce-воспроизводить) вируса, при абортивной - ее нарушение на одном из этапов, при интегративной - интеграция вирусной нуклеиновой кислоты в клеточный геном.

РЕПРОДУКЦИЯ ВИРУСОВ

Как отмечалось выше, вирусы являются самореплицирующейся формой, неспособной к бинарному делению, в отличие от микроорганизмов с клеточной организацией. В 50-х годах было установлено, что размножение, или репродукция, вирусов происходит путем репликации их нуклеиновой кислоты и биосинтеза белков с последующей самосборкой вириона. Этот процесс происходит в разных частях клетки - ядре или цитоплазме, вследствие чего получил название дизъюнктивного, т. е. разобщенного размножения.

Вирусная репродукция представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека и животных, насекомых, растений и бактерий, которая состоит в подчинении клеточных матрично-генетических механизмов вирусной информации.

1-я стадия - адсорбция - характеризуется прикреплением вириона к клеточным рецепторам, представляющим собой глико-протеины клеточной мембраны, содержащей нейраминовую кислоту. Такие рецепторы имеются у ряда клеток, в частности эритроцитов, на которых адсорбируются1 многие вирусы. Для орто- и парамиксовирусов специфическими рецепторами являются гликолипиды, содержащие сиаловую кислоту (ганглиозиды), для других - белки или липиды клеточной мембраны.

Рецепторами вирусов являются так называемые «прикрепительные» белки, располагающиеся в составе капсидов простых вирионов и суперкапсидов сложных вирионов. Они могут иметь форму нитей (фибры у аденовирусов) или шипов (глико-протеиновые образования на внешней оболочке орто- и парамиксо-, рабдо-, арено- и буньявирусов).

Первый этап адсорбции определяется неспецифическими силами межмолекулярного притяжения, второй - специфической структурной гомологией или комплементарностью рецепторов чувствительных клеток и вирусов.

2-я стадия - проникновение вируса в клетку хозяина происходит путем виропексиса и слияния мембран. Виропексис есть не что иное, как частный случай рецепторного эндоцитоза, который состоит в инвагинации участка плазматической мембраны, где имеются углубления, покрытые рецепторами снаружи, на которых адсорбируется вирус (рис. 5.3). Затем происходит образование вакуоли вокруг вируса, в составе которой он находится в цитоплазме клетки хозяина. Описанный способ проникновения вирусных частиц характерен для аденовирусов, вируса гриппа и др.

Проникновение вирусной частицы в клетку хозяина может произойти и путем слияния мембран (рис. 5.4). В этом случае вирусная оболочка сливается с плазматической мембраной клетки хозяина, в результате чего внутренние структуры («сердцевина») вириона оказываются в цитоплазме зараженной клетки, а при слиянии с ядерной мембраной - в клеточном ядре.

3-я стадия - «раздевание» вирионов - заключается в их депротеинизации и освобождении от суперкапсида и капсида, препятствующих репликации вирусной нуклеиновой кислоты. «Раздевание» вириона начинается сразу же после его прикрепления к клеточным рецепторам и продолжается в эндоцитарной вакуоли и ее слиянии с лизосомами при участии протеолитических ферментов, а также в ядерных порах и околоядерном пространстве при слиянии с ядерной мембраной.

4-я стадия заключается в транскрипции и репликации вирусных геномов. Транскрипция вирусного генома двунитевых ДНК-содержащих вирусов происходит, так же как и клеточного генома, по триаде ДНК->- иРНК->- белок (рис. 5.5, а). Различия касаются только происхождения фермента ДНК-зависимой РНК-полимеразы, необходимой для данного процесса. У вирусов, геном которых транскрибируется в цитоплазме клетки хозяина (например, вирус оспы), имеется собственная вирусспецифическая РНК-полимераза. Вирусы, геномы которых транскрибируются в ядре (папова- и аденовирусы, вирусы герпеса), используют содержащуюся там клеточную РНК-полимеразу II или III.

1. Вирусы с негативным геномом (минус-нитевые, рис. 5.5, б), к которым относятся орто-, парамиксо- и рабдовирусы (см. табл. 5.1), имеют в своем составе вирусспецифическую РНК-полимеразу или транскриптазу. Они синтезируют «РНК на матрице геномной РНК. Подобный фермент отсутствует в нормальных клетках, но синтезируется клетками, зараженными вирусами.

Он находится в составе как однонитевых, так и двунитевых РНК-содержащих вирусов.

2. У вирусов с положительным геномом к которым относятся пикорна-, тогавирусы и др.,функцию иРНК выполняет сам геном, который транслирует содержащуюся в нем информацию на рибосомы клетки хозяина.

3. Особняком стоит группа РНК-содержащих ретровирусов,в составе которых имеется обратная транскриптаза, или ревертаза. Уникальность этого фермента состоит в его способности переписывать информацию с РНК на ДНК. Этот процесс назывется обратной транскрипцией

Как отмечалось выше, количество генов в вирусном геноме весьма ограничено. Поэтому для увеличения количества вирусной информации существует своеобразный трансляционный механизм, функционирующий через иРНК, который передает значительно больше информации, чем записано в вирусной нуклеиновой кислоте. Это достигается разными путями, например при транскрипции информации с переписывающихся участков ДНК на «РНК путем сплайсинга (вырезание бессмысленных кодонов и сшивание концов), а также при считывании антикодонами гРНК одной и той же молекулы иРНК с разных нуклеоти-дов. При этом образуются новые триплеты, увеличивающие количество транслируемой информации.

Регуляция транскрипции осуществляется клеточными и вирусспецифическими механизмами. Она заключается в последовательном считывании информации с так называемых «ранних» и «поздних» генов. В первых закодирована информация для синтеза вирусспецифических ферментов транскрипции и репликации, во вторых - для синтеза капсидных белков.

Вирусспецифическая информация транслируется на рибосомы клетки хозяина, которые предварительно освобождаются от клеточных белков и собираются в вирусспецифические полисомы г-еплилацпл пируиныл геномов заключается в синтезе молекул ДНК или РНК, которые накапливаются в фондах этих нуклеиновых кислот, использующихся при сборке вирионов.

Репликация вирусной ДНК происходит на обеих нитях при участии клеточной ДНК-полимеразы. У однонитевых вирусов вначале образуется вторая нить (репликативная форма).

Репликация вирусных РНК происходит только при участии того же вирусспецифического фермента, который катализирует транскрипцию вирусного генома. У плюс-нитевых вирусов репликация РНК практически не отличается от их транскрипции. У минус-нитевых вирусов репликация отличается от транскрипции длиной образовавшихся дочерних молекул РНК. При репликации они полностью соответствуют по своей протяженности материнской нити, а при транскрипции образуются укороченные молекулы иРНК.

У ретровирусов репликация, так же как и транскрипция ДНК, происходит в составе клеточного генома при участии клеточной ДНК-полимеразы.

5-я стадия - сборка вириона - состоит прежде всего в образовании нуклеокапсидов. Поскольку синтез вирусных нуклеиновых кислот и белков в клетке происходит в разных структурах клетки, необходима транспортировка составных частей вириона в одно место сборки. При этом вирусные белки и нуклеиновые кислоты обладают способностью узнавать и самопроизвольно соединяться друг с другом. В основе самосборки простых вирионов лежит способность вирусных полипептидов соединяться в капсомеры, которые, располагаясь вокруг осей симметрии, образуют многогранник. В других случаях полипептиды в виде спирали окружают вирусную нуклеиновую кислоту.

Многие простые вирионы собираются на репликативных комплексах- мембранах эндоплазматического ретикулума."У сложных вирионов сборка нуклеокапсида начинается на репликативных комплексах, а затем продолжается на плазматической мембране, с наружной стороны которой располагаются суперкапсидные гликопротеиды. Затем гликопротеидные и примыкающие к ним с другой стороны нуклеокапсидные участки выпячиваются через клеточную мембрану, образуя почку, как это имеет место у орто- и парамиксовирусов, рабдовирусов. После отделения почки, содержащей нуклеокапсид и суперкапсидные белки, образуются свободные вирионы. Они либо через клеточную плазматическую мембрану проходят во внеклеточное пространство, либо через мембрану эндоплазматического ретикулума проникают в вакуоль эндоплазматической сети. При этом мембранные липиды обволакивают почку, вытесняя из нее белки. Многие ДНК-содержащие вирусы, например вирус герпеса, собираются в ядре клетки на ее мембране, где образуются нуклеокапсиды. Затем они отпочковываются в перинуклеарное пространство, приобретая внешнюю оболочку. Дальнейшее формирование вириона происходит в мембранах цитоплазматического ретикулума и в аппарате гольджи, куда вирус транспортируется на поверхность клетки.

6-я стадия - выход вирусных частиц из клетки - происходит двумя путями. Простые вирусы, лишенные суперкапсида, например пикорнавирусы, аденовирусы и др., вызывают деструкцию клетки и попадают во внеклеточное пространство. Другие вирусы, имеющие липопротеидную внешнюю оболочку, выходят из клетки путем почкования, в результате чего в течение длительного времени она сохраняет свою жизнеспособность. Такой путь характерен для вируса гриппа и др.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Этапы репродукции вирусов

Стадии репродукции вирусов

Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип - завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип - не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения - характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; "раздевание" вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.

Адсорбция

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т.е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны - так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 10 4 до 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Проникновение в клетку

Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

"Раздевание"

Процесс "раздевания" заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. "Раздевание" вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его "раздевания". Конечными продуктами "раздевания" являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.

Биосинтез компонентов вируса

Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации.

Формирование (сборка) вирусов

Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически "узнавать" друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

репродукция вирус клетка адсорбция

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки

Различают два основных типа выхода вирусного потомства из клетки. Первый тип - взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется "почка", содержащая нуклеокапсид. Затем "почка" отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

Живые противовирусные вакцины, какими способами они получены

Живые вакцины изготовляют из живых ослабленных (аттенуированных) штаммов вирусов. Такие штаммы должны обладать следующими стабильными, наследственно закрепленными свойствами:

утрата вирулентности исходного вируса;

сохранение способности приживаться и размножаться в организме;

сохранение специфической иммуногенности исходного патогенного штамма;

способность вызывать образование иммунитета у привитых животных.

Введенные в организм вакцинные штаммы должны вызывать не заболевание, а особое, качественно новое состояние - так называемый вакцинальный процесс.

Получение вакцинных штаммов с перечисленными свойствами удается путем культивирования вирулентных вирусов (обычно выделенных от больных животных в очаге инфекции) в условиях, не соответствующих их природным потребностям адаптирования к маловосприимчивым или невосприимчивым животным, а также выращивания в развивающихся куриных эмбрионах или в культуре клеток. При многократном пассировании на живых системах вирусы постепенно теряют патогенность, сохраняя антигенные свойства.

К перспективным методам получения вакцинных штаммов следует отнести селекцию природно-ослабленных штаммов вирусов при атипично или латентно протекающих инфекциях, а также селекцию мутантов, индуцированных физическими и химическими мутагенами (пониженная температура культивирования, ультрафиолетовое облучение, воздействие ультразвуком и др.).

Для приготовления живых вакцин используют также гетеротипичные антигенно-родственные апатогенные штаммы: штаммы вируса оспы голубей для профилактики оспы кур, вирус кори для защиты собак от чумы плотоядных, вакцинный штамм вируса чумы свиней для профилактики диареи крупного рогатого скота и др.

Технология изготовления живых вакцин сводится к культивированию вакцинного штамма вируса в какой-либо биологической живой системе (животные, куриные эмбрионы, культуры тканей и клеток). Полученный вируссодержащий материал подвергают очистке от балластных (клеточных компонентов и др.) веществ. Далее проводят контроль на чистоту (посев на бактериальные питательные среды), безвредность и активность на восприимчивых животных. При соответствии этим требованиям полученный материал разливают по ампулам или флаконам и подвергают лиофильному высушиванию.

Живые вакцины, полученные на основе аттенуированных вакцинных штаммов вирусов, обладают рядом преимуществ перед инактивированными. Главное из них - напряженность и длительность создаваемого ими иммунитета, приближающегося к постинфекционному. Важное достоинство большинства живых вакцин - однократное введение. При этом происходит репродукция вакцинного штамма в организме в результате образования и поступления в организм в течение длительного времени активных антигенных субстанций, обеспечивающих формирование напряженного иммунитета. Вторым преимуществом живых вакцин является возможность вводить их не только подкожно, но и перорально, интраназально и аэрозольно.

Однако живые вакцины наряду с отмеченными преимуществами имеют и ряд недостатков, связанных с тем, что действующее начало этих препаратов (живых вирусов) весьма чувствительно к неблагоприятным факторам, возникающим в производстве, при транспортировке, хранении и применении, а также не исключена возможность реверсии вируса.

В специальных требованиях предусматривается качество компонентов живых вакцин и особенно чистота вируссодержащего материала. При получении живых вакцин на культурах клеток, в куриных эмбрионах субстраты могут оказаться контаминированными посторонними вирусами, микоплазмами, бактериями, и это может привести к серьезным последствиям.

Живые вакцины не содержат консервантов, поэтому при вскрытии ампул и растворении их содержимого необходимо строго соблюдать правила асептики. При накожном методе вакцинации необходимо использование для предварительной обработки таких дезинфицирующих средств, которые длительное время сохраняются на месте применения препарата.

Общая характеристика онкогенных ретровирусов

Онкогенные Вирусы

Впервые вирусы связали со злокачественными новообразованиями в своих наблюдениях Эллерман и Банг (1908), которые отметили, что способ передачи лейкемии у домашней птицы напоминает таковой при инфекционной болезни. Раус (1911) показал, что солидная злокачественная опухоль, куриная саркома вызывается вирусом; за это открытие он был запоздало удостоен Нобелевской премии в 1966. Вирусы, вызывающие опухоли у млекопитающих были впервые обнаружены Шоупом, который выделил вирус фибромы кролика в 1932 и вирус папилломы в 1933. Хотя папиллома является доброкачественной опухолью, она может малигнизироваться. Биттнер (1936) предположил, что рак молочной железы у мышей может быть вызван вирусом, передаваемым от матери потомству через грудное молоко. В течение 1950-ых годов было выявлено большое количество вирусов, вызывающих лейкемию у грызунов. Большой интерес был вызван открытием Стюарт и Эдди (1957) вируса полиомы, который при введении новорожденным грызунам мог вызывать развитие большого количество разнообразных опухолей. Трентином (1962) было показано, что введение некоторых типов аденовирусов человека новорожденным хомякам вызывало развитие сарком. Бёркит (1963) выявил специфическое географическое распространение лимфом у африканских детей и предположил, что они могут быть вызваны вирусом, передающимся насекомыми. Выделенный из лимфомы Бёркита вирус Эпштейна-Барр было предложено считать этиологическим агентом лимфомы Бёркита. Много вирусов было выделено из человеческих опухолей или обнаруживалось электромикроскопически в пораженных клетках и тканях, но большинство из них были только "вирусами-пассажирами". присутствующими в поражениях, а не вызывающими их агентами.

Вирусы, которые вызывают опухоли у своих естественных хозяев или у подопытных животных, или же стимулируют злокачественное преобразование в культуре клеток, известны как онкогенные вирусы. Трансформация представляет собой различные изменения, которые сопровождают преобразование нормальной клетки в злокачественную. Трансформация из нормальных в злокачественные клетки является многостадийным процессом, и может быть частичной или полной. Например, некоторые вирусные агенты могут превращать инфицированные клетки в "неумирающие", так что они становятся способными к непрерывному размножению в культуре, без приобретения других особенностей злокачественного развития.

Таблица 3. Онкогенные вирусы

ВИРУСЫ РНК

I. Retroviruses:

Вирусы лейкозов птиц

Вирусы лекцозов мышей

Вирусы рака молочных желез мышей

Лейкозно-саркоматозные вирусы различных животных

Вирусы Т-клеточной лейкемии человека

ВИРУСЫ ДНК

Папилломавирусы человека, кроликов и других животных

Полиомавирус

Обезьяний вирус 40

BKиJCвирусы

Вирус контагиозного моллюска

Вирус Яба

Вирус фибромы Шоупа

III. Аденовирусы

Многие типы аденовирусов человека и животных

IV. HERPESVIRUSES

1. Вирус болезни Марека

2. Вирус опухоли лягушек Люке

3. Epstem-Barrвирус

4. Вирусы простого герпеса типов 1 и 2

5. Вирус цитомегалии

V. Вирус гепатита B

Преобразованные клетки изменены по форме и теряют способность к "контактному торможению" так что вместо роста одним слоем, они растут скоплениями, одна над другой, формируя "микроопухоли". Участки трансформации могут быть легко выявлены и используются при исследовании онкогенных вирусов, таких как вирус саркомы Рауса.

Около четверти из приблизительно 600 вирусов животных обладают онкогеным потенциалом (Таблица 1). Вирусы, связанные с раковыми образованиями людей описаны в Таблице 2. Среди онкогенных вирусов есть и РНК - и ДНК-содержащие. В то время как все онкогенные РНК-содержащие вирусы (которые раньше назывались онкорнавирусы) принадлежат к единственному семейству (Ретровирусы), онкогенные вирусы встречаются среди всех основных групп ДНК-содержащих вирусов, кроме парвовирусов. Ретровирусы ответственны за естественно возникающую лейкемию и саркому у нескольких видов животных. Среди ДНК-содержащих вирусов, некоторые герпесвирусы вызывают злокачественные опухоли у их естественных хозяев.

Ретровирусы .

Ретровирусы - оболочечные, сферические вирусы, которые выходят почкованием через клеточную мембрану хозяина. Они имеют приблизительно 100 нм в диаметре. Геном состоит из двух идентичных линейных односпиральных молекул РНК. Икосаэдральный нуклеокапсид содержит спиральный рибонуклеопротеид и окружен оболочкой состоящей из гликопротеидов и липидов.

Характерная особенность ретровирусов - присутствие в вирионе необычного фермента - РНК зависимой ДНК полимеразы или обратной транскриптазы (отсюда имяretro , о значающее обратно). В отличие от классической транскрипции генетической информации от ДНК на РНК, фермент обратная транскриптаза готовит ДНК-копию РНК-генома ретровируса - первоначально РНК-ДНК гибрид, а затем его двухспиральную ДНК-форму. Двухспиральная ДНК-форма ретровирусного генома, называемаяпровирусом , и нтегрирует в ДНК инфицированной клетки-хозяина. Именно от провируса транслируются все ретровирусные белки. Заражение онкогенным ретровирусом не ведет к цитолизу или гибели инфицированных клеток, но провирус остается интегрированным в ДНК клетки-хозяина до конца жизни клетки и воспроизводится вместе с клеточным геномом при размножении клеток.

В то время как все онкогенные РНК-содержащие вирусы принадлежат семейству Retroviridae , н е все ретровирусы онкогенны. СемействоRetroviridae классифицируется на три подсемейства.

1. Oncovirinae включает все онкогенные РНК содержащие вирусы (прежде называемое онкорнавирус).

2. Spumavirinae содержит неонкогенные "пенистые вирусы" (spuma = пена) вызывающие бессимптомные инфекции у нескольких видов животных и представляющие собой загрязняющие примеси первичных культур клеток, в которых они вызывают пенистое перерождение.

3. Lentivirinae включает как вирусы вызывающие "замедленные инфекции" (lentus = медленно) у животных, так и вирусы человеческих и животных иммунодефицитов.

Ретровирусы широко распространены; их находят почти у всех позвоночных, включая животных, птиц и рептилий. Основываясь на круге хозяев и типах вызываемых болезней, онкогенные Ретровирусы можно разделить на следующие группы:

1 . Вирусы лейкозно-саркоматозного комплекса птиц . Группа антигенно родственных вирусов, которые вызываютAvianлейкозы (вирусы лимфоматоза, миелобластоза и эритробластоза) или саркому у домашних птиц (вирус саркомы Рауса, ВСР).

2 . Вирусы мышиных лейкозов . Эта группа состоит из нескольких штаммов вирусов мышиной лейкемии и вирусов саркомы, названных по имени исследователи впервые описавших их (например Гросс, Френд, Молони, Раушер).

3 . Вирус опухоли молочной железы мышей . Этот вирус имеется в некоторых линиях мышей, у которых часто встречается рак молочной железы. Он известен как "молочный фактор" или "вирус Биттнера". Он размножается в молочной железе и передается от матери потомству через грудное молоко. Мыши могут быть заражены через рот, через подкожную или внутрибрюшинную инъекцию. Рак молочной железы развивается только у мышей восприимчивых линий после латентного периода в 6-12 месяцев.

4 . Вирусы лейкозов и сарком других животных . Большое количество вирусов было выделено из лейкозов и сарком различных видов животных - кошек, хомяков, крыс, морских свинок и обезьян.

5 . Т-лимфотропные вирусы человека (HTLV ). Ретровирусы, названные "человеческие Т-лимфотропные вирусы" были выделены в 1980 из культур клеток от взрослых больных кожной T-клеточной лимфомой (грибковый микоз) и лейкемией (синдром Сезара) в США. Подобные вирусы были выделены от больных Т-клеточной лейкемией в Японии и Карибском бассейне. HTLV1-го типа имеются во всем мире, но распространенность заболеваний ограничена эндемичными областями. Помимо Т-клеточной лейкемии,HTLV-Iтакже связан с тропическим спастическим парапарезом, демиелинирующей болезнью. Вирус в основном инфицирует T4 (CD4) клетки. На инфицированных T-клетках обнаруживается большое количество рецепторов к ИЛ-2. Близко родственныеHTLV-IIтакже связаны с T-клеточными злокачественными новообразованиями. Известно, чтоHTLV-инфекция передается при переливании крови и другими способами введения лейкоцитов.

Видовая специфичность . Ретровирусы обычно поражают только один вид хозяина, специфика обусловлена главным образом присутствием вирусных рецепторов на поверхности клетки-хозяина. В зависимости от их способности расти в клетках другого вида, ретровирусы делятся на 1) экотропные (размножаются только в клетках естественного хозяина);

2) амфитропные (размножаются в клетках естественного и чужих видов); и 3) ксенотропные (размножаются только в клетках чужих видов, но не в клетках естественных хозяев).

Передача вирусов . Возможны два типа передачи ретровирусов. Экзогенные ретровирусы распространяются горизонтально. Большинство онкогенных ретровирусов являются экзогенными. Эндогенные ретровирусы передаются вертикально от родителей потомствупровирусом , и нтегированным в геном половых клеток. Эндогенный ретровирусный провирус ведет себя как клеточный ген и подчинен регулирующему влиянию клетки-хозяина. Эндогенные ретровирусы обычно "молчащие", не трансформируют клетки и не вызывают какое-либо заболевание. Они могут быть обнаружены либо из-за "активации" после воздействия радиации или химикатов, или методом гибридизации нуклеиновой кислоты.

Резистентность . Ретровирусы неустойчивы, инактивируются при 56 о С в течение 30 минут, слабыми кислотами, эфиром и формалином. Они устойчивы при - 30 о С

Морфология . Ретровирусы существуют в виде четырех морфологических типов. Частицы типа А существуют только внутри клеток. Они имеют 60-90 нм в диаметре и содержат кольцевидный нуклеоид, окруженный мембраной. Они могут являться формой предшественника других типов. Типы B, C и D являются внеклеточными. Диаметр В частицы - 100-130nm, с эксцентрическим нуклеоидом и несут поверхностные шипики. Частицы С типа имеют центральный нуклеоид и гладкую поверхностную мембрану. ЧастицыDтипа еще не охарактеризованы. Они имеют эксцентрический нуклеоид и несут короткие поверхностные шипики.

Большинство ретровирусов - частицы С типа. Вирус рака молочных железы мыши - частица типа B, а вирус рака молочной железы обезьян Мэзон-Пфайзера - частица типа D.

Антигены . Имеется два типа антигенов - типоспецифические гликопротеидные антигены, расположенные на оболочке, и группо-специфические нуклеопротеидные антигены, расположенные в ядре вириона. Перекрестные реакции между поверхностными антигенами ретровирусов от различных видов хозяев не наблюдаются.

Геномная структура . Ретровирусы имеют относительно простую геномную структуру.

Провирус стандартного ретровируса (такого как недефектный вирус лейкоза птиц или мышей) состоит из трех генов, требуемых для вирусной репликации - gag,pol, иenv. Ген gag кодирует белки нуклеокапсида, которые являются группоспецифическими антигенами , ген pol кодирует РНК-зависимую ДНК-полимеразу, ген env кодирует гликопротеиды оболочки. С обоих концов провируса имеется длинный концевой повтор (LTR), непосредственно связывающийся с ДНК клетки-хозяина. LTR-участки обеспечивают контроль регуляции функции генов провируса.

Некоторые ретровирусы (трансрегулирующие вирусы) типа HTLV или HIV несут четвертый ген tat после env гена. Это - трансактивирующий ген, который регулирует функцию вирусных генов.

Стандартные онкогенные ретровирусы типа вирусов хронической лейкемии является медленными трансформирующими вирусами , т о есть они имеют низкий онкогенный потенциал и стимулируют злокачественное преобразование вообще только клеток крови после длительного латентного периода. Они не трансформирует культивируемые клетки. Они способны к нормальной репликации. Напротив, острые трансформирующие вирусы - высоко онкогенны и вызывают злокачественное развитие после короткого латентного периода в недели или месяцы. Они могут вызывать различные типы сарком, карцином, лейкозов и также трансформировать клетки в культуре. Однако, наиболее сильные трансформирующие вирусы неспособны нормально реплицироваться, потому что они содержат в своем геноме дополнительный ген, вирусный онкоген (V - onc ген) который заменяет некоторых из генов, существенных для репликации вируса. ТакиеV-onc вирусы могут репродуцироваться только при коинфекции со стандартным помощником ретровируса. Вирус саркомы Рауса, который несет онкогенsrc (произносится "сарк"), наиболее хорошо изученный среди острых трансформирующих вирусов, отличается способностью реплицироваться, то есть он может нормально реплицироваться, потому что обладает полным комплектом gag , pol , и env генов. Большинство острых трансформирующих вирусов дефектны в отношении репликации.

Список используемой литературы

1. Медицинская микробиология, вирусологии и иммунология - Зверев В.В. - Учебник в 2-х томах. Год выпуска: 2010

2. Пиневич А.В., Сироткин А.К., Гаврилова О.В., Потехин А.А. П32 Вирусология: учебник. СПб.: Изд-во С. - Петерб. ун-та, 2012. - 432 с

Размещено на Allbest.ru

...

Подобные документы

    Систематика, морфология, антигенные свойства. Патогенность, место репродукции, восприимчивые животные, лабораторные модели. Устойчивость вируса. Характеристика болезни вызываемой вирусом. Определение(синономы). Эпизоотологические данные. Патогенез.

    контрольная работа , добавлен 06.11.2007

    Специфические факторы противовирусного иммунитета. Два варианта выдачи иммунного ответа в форме биосинтеза антител. Вирус инфекционного бронхита птиц: возбудитель, диагностика. Методы лечения вируса ящура. Культивирование вирусов в культуре клеток.

    курсовая работа , добавлен 17.11.2010

    Понятие, сущность, типы, динамика и способы распространения эпифитотия, а также роль патогена, растения-хозяина и окружающей среды в его развитии. Анализ путей передачи вирусов растений. Описание мер борьбы, по защите растений от инфекционных заболеваний.

    реферат , добавлен 14.11.2010

    Роль условно-патогенных бактерий и вирусов в этиопатогенезе острых кишечных и респираторных болезней. Применение для профилактики и лечения специфических поливалентных вакцин и сывороток крови. Пути повышения резистентности сельскохозяйственных животных.

    курсовая работа , добавлен 05.01.2011

    Негативные последствия болезней, вызываемых слабопатогенными вирусами. Методы выделения вирусов из материала больных животных и трупов. Возбудитель и эпизоотология оспы птиц, ее профилактика и лечение. Клинические признаки и диагностика бешенства у коров.

    контрольная работа , добавлен 23.10.2013

    Уравновешивание популяции вредителей. Основные особенности функционирования экологических систем. Биологическая борьба с вредными видами организмов. Численность популяций отдельных видов. Охрана полезных организмов и вирусов и их массовая интродукция.

    реферат , добавлен 21.07.2011

    Характеристика понятия эпифитотии. Ознакомление с путями передачи вирусов от одного растения к другому. Рассмотрение симптом местных, прогрессирующих и повсеместных эпифитотий. Описание основных методов защиты растений от инфекционных заболеваний.

    презентация , добавлен 07.11.2013

    Таксономия, этапы репродукции вируса ринотрахеита кошек. Основной путь заражения. Особенности культивирования в различных живых системах. Клинические признаки заболевания. Принципы диагностики герпес-вирусной инфекции методом полимеразной цепной реакции.

    реферат , добавлен 02.06.2015

    Определение и история открытия заболевания. Этиология вируса африканской чумы свиней. Эпизоотология, клинические признаки и патогенез. Основные методы выделения вируса и выявления антигенов. Патологоанатомические изменения, дифференциальная диагностика.

    курсовая работа , добавлен 20.11.2013

    Таксономия вируса африканской чумы свиней, характеристика вириона, распространение, степень опасности и ущерб. Антигенные свойства вируса АЧС. Гемадсорбирующая активность и культуральные свойства. Этапы лабораторной диагностики и методы профилактики.

Репродукция вирусов (от англ, reproduce . воспроизводить) осуществляется в несколько стадий, последовательно сменяющих друг друга:

· адсорбция вируса на клетке;

· проникновение вируса в клетку;

· «раздевание» вируса;

· биосинтез вирусных компонентов в клетке;

· формирование вирусов;

· выход вирусов из клетки

Адсорбция.

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е.

прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны, так называемых, рецепторах.

Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 104 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Поверхностные структуры вируса, «узнающие» специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками. Обычно эту функцию выполняет один из поверхностных белков капсида или суперкапсида. Способность вирусов избирательно поражать определенные клетки органов и тканей организма называют тропизмом вирусов (от греч. tropos . направление).

Проникновение в клетку .

Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

«Раздевание» вируса

Процесс «раздевания» заключается в удалении защитных вирусных оболочек и

освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.



Биосинтез компонентов вируса .

Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства. Реализация генетической информации вируса осуществляется в соответствии с хорошо известными из биологии процессами транскрипции (от лат.transcriptio . переписывание, т.е. синтез информационных РНК, комплементарных матричным ДНК или РНК), трансляции (от лат. translatio . передача, т. е. синтез белков на рибосомах клетки с участием иРНК) и репликации (от лат. replicatio . повторение, т. е. синтез молекул нуклеиновой кислоты, гомологичных геному). Поскольку генетический аппарат вирусов остаточно разнообразен, то передача наследственной информации в отношении синтеза иРНК различна. Основные схемы реализации вирусной генетической информации могут быть представлены следующим образом:

Для синтеза иРНК одни вирусы используют клеточные ферменты, другие - собственный набор ферментов (полимераз).

Вирусная нуклеиновая кислота кодирует синтез двух классов белков: неструктурных белков-ферментов, которые обслуживают процесс репродукции вирусов на разных его этапах, и структурных белков, которые войдут в состав вирусных частиц потомства. Синтез компонентов вируса (белков и нуклеиновых кислот) разобщен во времени и пространстве, т. е. протекает в разных структурах ядра и цитоплазмы клетки. Вот почему этот уникальный способ размножения вирусов называется дисъюнктивным (от лат. disjunctus - разобщенный).



Формирование (сборка) вирусов .

Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически узнавать друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, ионных и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

· формирование вирусов является многоступенчатым процессом і с образованием промежуточных форм;

· сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

· формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

· сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки.

Различают два основных типа выхода вирусного потомства из клетки. Первый тип. взрывной. характеризуется одновременным выходом большого

количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.).

Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

Питательные Среды. Требования, предъявляемые к питательным средам. Типы питательных сред.

Питательные среды должны содержать в достаточном количестве источники углерода, азота, неорганические соли, в ряде случаев - ро­стовые факторы (витамины, аминокислоты), быть влажными, чтобы процесс простой диффузии проходил без затруднения, прозрачными (по возможнос­ти), чтобы визуально или под микроскопом можно было наблюдать рост микробов, стерильными, иметь оптимальные концентрации водородных ионов (рН среды) и окислительно-восстановительный потенциал. Источ­ником азота для микроорганизмов являются белки, но большинство мик­робов неспособны усваивать нативный белок, поэтому используются про­дукты кислотного и ферментного расщепления белка: пептон, казеин.

Исходными компонентами искусственной питательной среды является мясная вода, кислотный и ферментный гидролизат казеина, свернутой крови. К основе добавляют хлорид натрия, пептон

Мясная вода содержит минеральные вещества, углеводы, витамины. Для получения мясной воды нежирное мясо, очищенное от сухожилий, измельчают на мясорубке, заливают двойным объемом воды, кипятят на огне, фильтруют, доливают водопроводной воды до первоначального объема, разливают по бутылкам истерилизуют.

Казеин пищевой кислотный содержит полноценный набор аминокислот, характеризуется высокой питательностью, является отходом молочной промышленности. Из казеина готовят перевар.

Пептон – продукт неполного переваривания белка, содержит альбумозы, пептоны и полипептиды аминокислот в незначительном коли­честве, состав их зависит от глубины расщепления белка. Пептон представляет собой порошок светло-желтого цвета, хорошо растворяется в воде, не свертывается при нагревании. Используется как источник азота и углерода.

При приготовлении сред все компоненты смешивают воде, греют или кипятят для растворения агар-агара, прозрачность придают путем фильтрования через ватно-марлевые или тканевые фильтры или осветляют добавлением куриного белка или свежей сыворотки крови, устанавливают рН среды с помощью индикаторов колориметрическим или электрометрическим способом и стерилизуют.

Классификация питательных сред


Питательные Транспортные Консервирующие


Естественные Искусственные

Синтетические

Простые Специальные Дифференциально- Элективные (Селективные)

диагностические


Плотные Жидкие

Естественные среды представляют собой природные субстраты (молоко, кровь, желчь, сыворотка, картофель). Искусственные содержат смесь природных органических веществ и продуктов их кислотного или ферментативного распада. Синтетические среды состоят из буферной солевой основы и растворов аминокислот, углеводов, пуринов, пиримидинов, нуклеотидов, нуклеозидов, жирных кислот, витаминов в точно установленных дозировках. В качестве источников азота в них используются аминокислоты. Достоинство этих сред в том, что они имеют постоянный состав, по ним можно определить потребности микробов в тех или иных питательных веществах.

Плотные питательные среды готовят из жидких с добавлением уплотнителя. В качестве уплотнителя обычно применяют агар-агар. Агар-агар – продукт, получаемый из морских водорослей, представляет собой желтоватый порошок или пластинки, содержит высокомолекулярные полисахариды, не расщепляется большинством микроорганизмов, не разрушается при автоклавировании, питательную ценность сред не изменяет, не подавляет рост микробов. Для иммунологических и бактериологических полей используется вымороженный, осветленный агар, который при кипячении или автоклавировании смеси порошка с водой расплавляется при температуре 85-100°С, а при охлаждении до 45-48°С образует гель.

Для приготовления, плотных питательных сред агар-агар добавляют в концентрации от 1,5 до 3%.

Простые среды.

Мясо-пептонный бульон (МПБ) является белковой основой всех сред. Существует несколько способов приготовления МПБ:

а) на мясной воде с добавлением готового пептона – это так называемый мясопептонный бульон;

б) на переварах продуктов гидролиза исходного сырья при помощи ферментов (трипсина – бульон Хоттингера, пепсина – бульон Мартена).

Мясо-пептонный агар (МПА) – получают путей добавления к МПБ arap-arapa (l,5-3%). Если МПА распределен по диагонали пробирки или флакона – это скошенный агар. Для его получения пробирки для засты­вания среды оставляют в наклонном положении. Если среда распределе­на в пробирке вертикально высотой 5-7 см, это агар столбиком. МПА, застывший в чашках Петри в виде пластинки – пластинчатый агар. Если среда имеет вертикальный слой высотой 2-3 см, и диагональный слой такой же величины, это полускошенный агар.

Специальные питательные среды – среды, на которых создаются условия для выращивания тех бактерий, которые не растут на простых средах. Кровяной агар или кровяной бульон – получают путем добавле­ния к питательной среде 5-10% подогретой стерильной дефибринированной крови барана, кролика лошади, человека. Среда используется для выделения стрептококков, пневмококков и других бактерий, а также для изучения гемолитической активности. Сывороточный бульон или сывороточный агар получают, путем добавления к простым средам 15-20% лошадиной или бычьей сыворотки. Среда применяется для выделения пневмококков, менингококков. Желчный бульон или желчный агар получают путем добавления к питательной среде медицинской желчи без консерванта, или свежеполученной от крупного рогатого скота. Среда применяется для выделения брюшнотифозных, паратифозных и дизенте­рийных палочек. Специальные среды для культивирования анаэробных бактерий: среда Китта-Тароцци состоит из питательного бульона, глю­козы и кусочков печени или мясного фарша для адсорбции кислорода.

Желатин – животный белок, продукт частичного гидролиза коллагена. Имеет вид бесцветных или светло-желтых пластинок без запаха и вкуса. В холодной воде набухает, сильно поглощая воду. При темпера­туре 30°С растворяется, при охлаждении до 20-22°С превращается в гель (студень). Используется в микробиологии для изучения протеолитических ферментов.

Дифференциально-диагностические среды позволяют различить один вид микроба от другого. Принцип построения дифференциально-диагностических сред основан на разной биохимической активности бактерий. В состав дифференциально-диагностических сред входит основная пи­тательная среда, обеспечивающая размножение бактерий, определенный химический субстрат, различное отношение к которому является диагнос­тическим признаком, индикатор, изменение цвета которого свидетельству­ет о разложении субстрата и образовании кислых продуктов.

Агар Эндо – плотная среда, применяется для выделения и первичной идентификации энтеробактерий. В состав ее входят, кроме питательной основы, лактоза и основной фуксин, обесцвеченный сульфитом и фосфатом натрия. Правильно приготовленная среда бесцветна или имеет слегка розовый оттенок. Колонии бактерий (кишечная палочка), ферментирующие лактозу, окрашиваются на ней в красный цвет; бактерии, не ферментирующие лактозу (сальмонеллы), остаются бесцветными.

Среда Левина (лактозоэозинметиленовый агар) – среда для выделения энтеробактерий. Колонии лактозоферментирующих бактерий окрашены в темно-синий или черный цвет, колонии лактозоотрицательных бактерий вырастают под цвет среды (светло-фиолетового цвета).

Среды Гисса – набор определенных углеводов для изучения ферментативной активности бактерий и их дифференциации по этим признакам.

Элективные питательные среды содержат дополнительные вещества, задерживающие рост грамположительных бактерий. Селективные питательные среды стимулируют рост одних микробов и угнетают рост других. Селективные условия получают путем добавления в сре­ду химических веществ. Так как в этих средах патогенные бактерии размножаются и накапливаются, их называют также средами обогащения.

Среда Плоскирева – плотная питательная среда, содержащая со­ли желчных кислот, бриллиантовый зеленый, лактозу и индикатор. Эта среда является не только селективной, так как подавляет рост многих микробов и способствует лучшему росту возбудителей брюшного тифа, паратифов, дизентерии, но и дифференциально-диагностической, так как лактозоотрицательные бактерии (шигеллы) образуют на ней бесцветные колонии, а лактозоположительные – кирпично-красные.

Селенитовая среда - является лучшей средой обогащена для сальмонелл и дизентерийных микробов Зонне. Селенит натрии, содержащийся в среде, стимулирует рост этих бактерий и подавляет рост сопутствующей флоры.

Среда Мюллера служит для накопления сальмонелл. К питатель­ной среде добавлют мел, раствор Люголя и гипосульфит натрия. При взаимодействии этих веществ образуется тетратионат натрия, который угнетает рост кишечных палочек, но создает благоприятные условия для размножения сальмонелл.

Висмут-сульфит агар (среда Вильсона-Блера) – содержит соли висмута, бриллиантовую зелень. Сальмонеллы растут на этой среде в виде колоний чернота цвета. Другие виды бактерий на этой среде роста не дают.

Желточно-солевой агар (ЖСА) –среда для выделе­ния стафилококков, содержит до 10% хлорида натрия, что подавляет большинство бактерий, содержащихся в материале. Кроме того, эта сре­да является и дифференциально-диагностической, так как присутствие яичного желтка позволяет выявить фермент лецитиназу (лецитовителлазу), который образуют патогенные стафилококки. Лецитиназа расщеп­ляет лецитин на фосфорхолины и нерастворимые в воде жирные кисло­ты, поэтому среда вокруг лецитиназоположительных колоний мутнеет и появляется опалесцирующая зона в виде «радужного венчика».

Теллуритовые среды (сывороточно-теллуритовый агар, кровяно-теллуритовый агар) – селективные среды для выделения дифтерийных бактерий, содержат теллурит калия. Бесцветная соль теллура, содержащаяся в питательной среде, восстанавливается дифтерийными бактерия­ми до металла, окрашивающего колонии в черный цвет.

Щелочной агар элективен для холерных вибрионов, щелочная реакция среды (рН 9,0) не препятствует росту холерных вибрионов, но тормозит рост других микроорганизмов.

Консервирующие среды – среды, содержат добавки, предупреждающие размножение и гибель микробов, что способствует сохранению их жизнеспособности. Консервирующие среды применяются когда нет возможности быстрого посева на питательные среды. Для бактерий наиболее употребительны консерванты:

а) глицериновая смесь, состоящая из 0,5 л химически чистого
глицерина и 1,0 л физиологического раствора.

б) боратная смесь

в) фосфатно-буферная смесь

Для длительного сохранения свежевыделенных и производствен­ных культур применяют полужидкий голодный агар, в этой среде при пониженной жизнедеятельности микробов продукты обмена накапливаются незначительно, что способствует хорошему сохранению культур.

Специальные среды.

В бактериологии широко применяются сухие питательные среды промышленного производства, которые представляют собой гигроскопические порошки, содержащие все компоненты среды, кроме воды. Для их приготовления используются триптические перевары дешевых непищевых продуктов (рыбные отходы, мясокостная мука, технический казеин). Они удобны при транспортировке, могут длительно храниться, избавляют лаборатории от громадного процесса приготовления сред, приближают к разрешению вопроса о стандартизации сред. Медицинская промышлен­ность производит сухие среды Эндо, Левина, Плоскирева, висмутсульфит агар, питательный агар, углеводы с индикатором ВР и другие.

Термостаты

Для культивирования микроорганизмов используют термостаты.

Термостат – это аппарат, в котором поддерживают постоянную температуру. Прибор состоит из нагревателя, камеры, двойных стенок, между которыми циркулирует воздух или вода. Температура регулируется тер­морегулятором. Оптимальная температура для размножения большинства микроорганизмов 37°С.

11. Условия успешной антибиотикотерапии. Отрицательные стороны антибиотикотерапии. Действие антибиотиков на микробы в зависимости от дозы препарата. Методы определения чувствительности микробов к антибиотикам.

Рациональная антибиотикотерапия

Врач всегда должен помнить, что назначать антибиотики следует только при инфекциях бактериальной этиологии. Выбор антибиотиков должен основываться на знании их природной активности в отношении предполагаемых или установленных возбудителей заболевания, а также на локальных и региональных данных о резистентности микроорганизмов. Следует назначать только препараты с доказанной клинической эффективностью при инфекциях данной локализации, обращая при этом внимание на форму выпуска, профиль безопасности, возможность межлекарственных взаимодействий и др.

Обеспечить высокую эффективность лечения может только своевременное начало антибактериальной терапии. Не менее важными являются адекватное дозирование, оптимальная длительность курса антибактериальной терапии и своевременная оценка эффективности стартового антибиотика (через 48-72 ч от начала лечения). Существенную роль играет и оптимальное соотношение стоимость/эффективность. При выборе препарата и проведении антибактериальной терапии обязательно учитываются особенности пациента (возраст, масса тела, физиологические состояния (беременность, период лактации), иммунодефицитные состояния, сопутствующие заболевания, поведенческие стереотипы и др.) и течение заболевания (локализация, клинические проявления, тяжесть и др.).

Отрицательные стороны антибиотикотерапии

  • Дисбактериоз: антибиотики убивают полезную и патогенную микрофлору. Выраженность дисбактериоза зависит от дозы, продолжительности, типа лекарства и возраста человека. Как правило, после основной болезни маленьким детям приходится восстанавливать микрофлору. Как этого избежать? Параллельно с антибиотиками (2–3 раза в день) и 2 недели после лечения пить пробиотики (эубиотики) – бактерии для микрофлоры кишечника. Тогда дисбактериоза не будет либо его проявления уменьшатся.
  • Опасно пить женщинам в первом триместре беременности. Но если имеется болезнь, угрожающая жизни матери и ребенку, врач выбирает наименьшее зло. Не рекомендуется принимать кормящим грудью женщинам.
  • Индивидуальная непереносимость, аллергия или побочные эффекты. Об этом необходимо уведомить врача перед назначением антибиотика или после назначения, если побочные явления появились впервые, и врач сменит лекарство.

Важное условие рациональной антибиотикотерапии - правильный выбор препарата и назначение достаточных доз, способных оказать пагубное действие на
микроорганизм. Назначение препарата в малых дозах может способствовать развитию резистентности микробов.

Определение чувствительности к антибиотикам

А) методом дисков.

На поверхность питательного агара засевают газоном испытуемую культуру (стафилококк, кишечная палочка). Чашки приоткрывают и подсушивают при комнатной температуре 10-15 минут. Затем накладывают диски пинцетом на расстоянии 2 см друг от друга и от краев чашки. Чашки помещают в термостат для инкубации на 18-20 часов, перевернутыми кверху дном, после чего учитывают результат. Чашки помещают кверху дном на темную матовую поверхность, учет проводят в отраженном свете. С помощью линейки и измерителя определяют диаметр зон задержки роста вокруг дисков, включая диаметр дисков. Оценку результатов проводят по таблицам, которые содержат пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных микроорганизмов.

Б) методом серийных разведении.

Этот метод является количественным, так как позволяет определить минимальную ингибирующую концентрацию, т.е. наименьшую концентрацию антибиотика, ингибирующую рост исследуемой культуры. Исследование начинают с приготовления основного раствора, из которого готовят все последующие разведения в бульоне (в объеме 1 мл), после чего к каждому разведению до­бавляют 0,1 мл исследуемой бактериальной суспензии, содержащей 10 6 -10 7 бактериальных клеток в 1 мл. Для контроля ис­пользуют посев культуры на бульон без антибиотика. Посевы инкубируют при 37°С 18-20 часов. В контроле появится рост (пробирка станет мутной). Пробирки с прозрачной питательной средой указывают на задержку роста испытуемой культуры, а последняя пробирка с прозрачной питательной средой содержит наименьшую ингибирующую дозу антибиотика, определяющую сте­пень чувствительности испытуемой культуры к антибиотику.

Репродукция вирусов. Взаимодействие с хозяеном. Культивирование.

Вирусы не размножаются бинарным делением. В 50-х годах ХХ в. было установлено, что размножение вирусов происходит путем репродукции (англ. reproduce – воспроизводить, делать копию), т.е. путем воспроизведения их нуклеиновых кислот и синтеза белков с последующей сборкой вирионов. Эти процессы происходят в разных частях клетки хозяина (например, в ядре и цитоплазме). Такой разобщенный способ репродукции получил название дизъюнктивного.Репродукция вирусов характеризуется последовательной сменой отдельных стадий:

1) Адсорбция . Проникновение вирусной частицы в клетку начинается с ее адсорбции на клеточной поверхности благодаря взаимодействию клеточных и вирусных рецепторов. Рецепторы (лат. receptor – принимающий) – чувствительные специальные образования, воспринимающие раздражения, это молекулы или молекулярные комплексы на поверхности клеток, способные распознавать специфические химические группировки, молекулы или другие клетки и связывать их. У сложных вирионов рецепторы располагаются на внешней оболочке в виде шиповидных выростов или ворсинок, у простых вирионов – на поверхности капсида.

2) Проникновение вириона в клетку хозяина . Пути внедрения вирусов в чувствительные к ним клетки неодинаковы. Многие вирионы могут проникать в клетку путем пиноцитоза (греч. pino – пить, выпивать), когда образующаяся пиноцитарная вакуоль втягивает вирион внутрь клетки. Другие вирионы могут попадать в клетку прямым путем через ее оболочку.

3) Дезинтеграция (или "раздевание") вириона – освобождение НК от внешней оболочки и капсида. После проникновения вириона в клетку капсид претерпевает изменения, приобретает чувствительность к клеточным протеазам, разрушается, освобождая НК. У некоторых бактериофагов в клетку проникает свободная НК. Фитопатогенные вирусы проникают через повреждения в клеточной стенке, после чего адсорбируются на внутренних клеточных рецепторах и высвобождается НК.

4) Синтез вирусных белков и репликация НК . Синтез вирусоспецифичных белков происходит с участием информационных РНК (у одних вирусов они входят в состав вирионов, а у других синтезируются в зараженных клетках на матрице вирионной РНК или ДНК). Происходит репликация вирусных НК.

5) Сборка, или морфогенез вириона . Формирование вирионов возможно только при условии строго упорядоченного соединения вирусных структурных полипептидов и их НК, что обеспечивается самосборкой белковых молекул вокруг НК

6) Выход вириона из клетки хозяина. Из клетки вирусные частицы выходят одновременно (при разрушении клеток) или постепенно (без разрушения клеток).



Репродукция вируса в клетке происходит в несколько фаз:

· Первая фаза - адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

· Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

· Третья фаза - «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

Адсорбция вирионов на клетке. Механизм адсорбции вириона на восприимчивой клетке основан на взаимодействии его рецепторов с комплементарными рецепторами клетки. Рецепторы клетки и вириона являются специфическими структурами, расположенными на их поверхности. Миксовирусы и аденовирусы адсорбируются на мукопротеиновых рецепторах, а пикорнавирусы и арбовирусы ― на липопротеиновых рецепторах. Нейраминидаза у вириона миксовирусов разрушает мукогфотеиновые рецепторы и отщепляет N-ацетилнейраминовую кислоту от олигосахарида, содержащего галактозамин и галактозу. Их взаимодействия на этом этапе обратимы, так как на них влияют температура, солевые компоненты и реакция среды. Адсорбции вириона на клетке препятствуют сульфатированные полисахариды и гепарин, несущие отрицательный заряд, но их ингибирующее действие снимается поликар-тионами (ДЭАЭ-декстран, экмолин, протамннсулъфат), которые нейтрализуют отрицательный заряд сульфатированных полисахаридов.

Проникновение вириона в клетку. Процесс проникновения вирионов в клетку у миксовирусов осуществляется ферментом нейраминидазой, который вступает в непосредственный контакт с мукопротеидами клетки. Научные факты, накопленные за последние годы, показывают, что РНК и ДНК вирионов не отделяются от внешней их оболочки, т. е. вирионы целиком проникают в чувствительную клетку путем виропексиса или пиноцитоза. Это доказано в отношении вирусов оспы, осповакцины и других вирусов животных. Что касается фагов, то они заражают клетки своей нуклеиновой кислотой. Механизм заражения основан на том, что вирионы, содержащиеся в вакуолях клетки, гидролйзуются ферментами (протеаз, липаз). При этом освобождается ДНК от внешней оболочки фага и проникает в клетку.

В эксперименте заражают клетки нуклеиновой кислотой, выделенной от некоторых вирусов, и вызывают один цикл репродукции "вирионов. Но в естественных условиях передача инфекции с помощью инфекционной кислоты не происходит.

Синтез вирусных структурных компонентов. Процессы синтеза компонентов РНК-вирусов происходят после проникновения нуклеопротеидов (вирионов) в клетку, где образуются вирусные полисомы путем комплексирования вирусной РНК с рибосомами. Затем синтезируются ранние белки: ре-прессоры клеточного метаболизма и РНК-полимеразы, транслируемые с родительской молекулой вирусной РНК. В цитоплазме мелких вирусов или в ядре (вирусы гриппа) образуется двунитчатая вирусная РНК путем комплексирования родительской «плюс»-це-почки с вновь синтезированной и комплементарной ей «минус»-це-почкой. Соединение этих нитей нуклеиновой кислоты обусловливает образование однонитчатой структуры РНК, называемой репликативной формой (РФ), которая устойчива к РНК-азе и необходима для репродукции всех РНК-вирусов. Синтез вирусной РНК осуществляется реплекативным комплексом, в котором участвуют фермент РНК-полимеразы, полисомы, репликативная форма РНК. Существуют два типа РНК-полимераз: РНК-полимераза I катализирует образование репликативной формы на матрице «плюс»-це-почки; РНК-полимераза II участвует в синтезе вирусной однонитчатой РНК на матрице репликативной формы. Синтез нуклеиновой кислоты у мелких вирусов осуществляется в цитоплазме. У вируса гриппа в ядре синтезируются РНК и внутренний белок. РНК выходит из.ядра и поступает в цитоплазму, где с рибосомами синтезирует вирусный белок, и образующийся рибонуклеопротеид входит в химический состав вириона.

Синтез компонентов ДНК-вирусов. После проникновения вирионов в клетку в ней подавляется синтез нуклеиновых кислот и клеточных белков. В ядре на матрице ДНК-вируса синтезируется и-РНК, несущая информацию для синтеза белков. Механизм синтеза вирусных белков осуществляется на клеточных рибосомах, и источником их построения является аминокислотный фонд клетки. Активизация аминокислот происходит ферментами, с помощью и-РНК переносятся в рибосомы (полисомы), где они располагаются в синтезированной молекуле белка.

Таким образом, в зараженной клетке синтез нуклеиновой кислоты и белков вириона происходит в составе сложного репликатив-но-транскриптивного комплекса, который, по-видимому, регулируется определенной системой контрольного механизма.

Формирование вириона осуществляется с участием структурных компонентов клетки. Вирусы полиомиелита, герпеса и осповакцины формируются в цитоплазме, а аденовирусов ― в "ядре. Синтез вирусной РНК и образование нуклеокапсида (S-анти-гена) происходит в ядре, а гемагглютцнина (V-антигена) ―в цитоплазме. Затем S-антиген переходит из ядра в цитоплазму, где осуществляется формирование оболочки вириона. S-антиген покрывается вирусными белками, и в состав вириона включаются-гемагглютинины и нейраминидаза. И так происходит формирование потомства вируса гриппа.

Выход вирусов из клетки. Вирионы освобождаются из клеток двумя способами. Первый способ ― после полного созревания вирионов внутри клетки последние округляются, в них образуются вакуоли, разрушается клеточная оболочка; вирионы выходят одновременно и полностью из клетки (рикорнавирусы). Этот способ называется литическим. Второй способ ― вирионы освобождаются по мере созревания их на цитоплазматической мембране в течение 2―6 часов (арбовирусы,и миксовирусы). Освобождению миксовирусов из клетки, по-видимому, способствует нейраминидаза, которая разрушает клеточную оболочку. При этом способе 75― 90% вирионов спонтанно выходят в культуральную среду и клетки погибают постепенно).