Собираем качественный ЦАП уровня hi-end из недорогого набора. Простой ламповый фильтр для ЦАП или СD-проигрывателя Ламповый dac

Для ЦАП или CD-проигрывателя. На первый взгляд схема может показаться несколько сложной, да и некоторые заложенные в ней функции (типа фазовращателя) простому меломану ни к чему.

Сегодня мы предлагаем вам вариант подобного усилителя всего на одной лампе (в каждом канале), без лишних маркетинговых штучек, но, как и прежде, с хорошими характеристиками и высоким качеством звучания.

При тестировании на различных фокусных группах для разных видов ЦАПов был выявлен один общий результат — качество звучания CD-проигрывателя тем выше, чем лучше фильтруется сигнал на его выходе от ВЧ-составляющих. То есть выходной фильтр должен иметь довольно крутой спад АЧХ на границе слышимого диапазона.

Если в 90-е годы чаще всего использовались аналоговые фильтры, то в последнее время всё больше становятся популярными цифровые фильтры. Неудивительно, ведь при сравнительной простоте реализации они показывают гораздо более высокие характеристики по сравнению с аналоговыми фильтрами. Между тем, результаты тестов показали, что слушатели предпочитают CD-проигрыватели с аналоговыми фильтрами, так как цифровые хоть и имеют более высокие характеристики, в своей работе используют тактовые сигналы, что приводит к повышению уровня ВЧ-шумов.

Ну а если фильтр не только аналоговый, но и выполнен на лампах, то это кроме очистки от ВЧ-шумов делает звучание компакт-дисков более приятным, «тёплым», устраняет цифровую резкость звучания.

Схема фильтра представлена на рисунке:

Увеличение по клику

Усилитель имеет абсолютно плоскую АЧХ во всём звуковом диапазоне. Спад характеристики начинается на частоте 20 кГц (-0,5 дБ) и составляет -24 дБ/окт. Это позволяет очень хорошо отфильтровать все вч-шумы цифрового звуковоспроизведения и сделать звучание компакт-диска похожее на винил.

Кроме того, схема имеет низкое выходное сопротивление, что существенно снижает требования к соединительным межблочным кабелям.

Схема блока питания показана на рисунке:

Увеличение по клику

Здесь мы видим уже традиционный накал ламп постоянным током для снижения уровня фона сети.

Высоковольтный стабилизатор выполнен по схеме электронного дросселя с защитой по току.

Для улучшения разделения стерео-каналов каждый канал собран на отдельной печатной плате. Блок питания рассчитан на работу с двумя каналами.

Данную конструкцию можно оформить в виде отдельного блока или, если позволяет место, встроить в имеющийся CD-проигрыватель.

Для достижения высоких результатов по звучанию конденсаторы в схеме должны использоваться самого высокого качества. Конденсаторы С4 и С7 не указанные на схеме — это места на печатной плате на случай, если не удастся найти конденсаторы С3 и С6 нужной ёмкости и придётся соединять несколько параллельно, либо для изменения частоты среза фильтра.

Прослушивание показало существенное улучшение качества звучания CD-проигрывателя с таким фильтром. Это достаточно дешёвый и простой способ перевести ваш аппарат в более высокую ценовую категорию.

Рисунки печатных плат и схемы расположения элементов можно скачать

Печатные платы в формате SLayout (rar-архив, 47 кбайт).

Статья подготовлена по материалам журнала «Электор» (Германия)

Удачного творчества!

Главный редактор «РадиоГазеты».

28 комментариев к “Простой ламповый фильтр для ЦАП или СD-проигрывателя”

  1. Кирилл:
    Февраль 27, 2017

    Имеет ли смысл, на Ваш взгляд, «приподнимать» потенциал накала?

  2. Главный редактор:
    Февраль 27, 2017

    Здесь накал запитан постоянным напряжением. Так что это лишнее.

    Заметьте, что цепи накала ламп соединены последовательно! Учитывайте это при повторении конструкции.

    Если нет желания собирать стабилизатор для цепей накала, то тогда да — "приподнять накал не помешает.

  3. Кирилл:
    Февраль 28, 2017

    Постоянным — это понятно. Однако разность потенциалов всё равно остаётся, поскольку стабилизатор цепей накала на земле сидит. Соглашусь, фона быть, по идее, не должно. Однако не вредно ли самой лампе сие? Непонятно...

  4. Главный редактор:
    Март 1, 2017

    Это называется «слышал звон, да не знаю, где он» 🙂

    Потенциал накала поднимают, когда он питается переменным током, только для того, чтобы не было фона. Так как через участок подогреватель-катод (который по сути является диодом) фон напряжения накала (50Гц) успешно пролезает. Поднимая потенциал, мы этот диод запираем и дорогу фону преграждаем.

    Если накал питается постоянкой (да ещё стабилизированной), то фона там быть не должно, поэтому диод запирать не нужно. Экономим два резистора. На самой лампе это не сказывается.

    Для лампы важно, чтобы не превышалось МАКСИМАЛЬНО ДОПУСТИМОЕ напряжение подогреватель-катод. Указывается в справочниках. Обычно случается в катодных повторителях и мощных выходных каскадах.

  5. Кирилл:
    Март 1, 2017

    Отчего же, как раз знаю откуда этот звон — из даташитов. Например, для лампы 6Ф5П предельно допустимое напряжение катод-накал всего 100 вольт. Конструктивно эта лампа близка к ECL86/PCL86, поэтому, полагаю, что для неё это тоже справедливо. В представленной же схеме — данное условие, похоже, не соблюдается.

  6. Главный редактор:
    Март 2, 2017

    Для меня «похоже не соблюдается» и «не соблюдается» это очень разные вещи.

    Какое по вашему напряжение присутствует в этой схеме на катодах лампы?

  7. yuriyruss:
    Март 9, 2017

    PCL86 и 6ф5п по даташитам абсолютно разные лампы. Их в лоб низзя ставить. Нужно пересчитывать всю схему смещений напряжений. Попозже, когда проверю этот фильтр на 6ф5п, выложу сюда номиналы резисторов и напряжения на лампе.

  8. Главный редактор:
    Март 10, 2017
  9. Главный редактор:
    Март 10, 2017

    Кстати, мы в статье и не писали, что 6Ф5П это аналог PCL86.

    В этом уверяют на массе других сайтов.

    По цепям накала они точно отличаются.

  10. Сергей Храбан:
    Июль 18, 2017

    Здравствуйте! Подскажите пожалуйста, в блоке питания какой тип стабилитронов D1-D3 и D4 ?

  11. Главный редактор:
    Июль 19, 2017

    D4 — BZX55C18 (или аналог), КС218Ж, КС508Г, 1N4746A

    D1-D3 — NTE5157A, 1N3045 и аналогичные.

  12. Сергей Храбан:
    Июль 19, 2017

    Спасибо большое! Всех благ!

  13. kagantsov:
    Октябрь 5, 2017

    В ПП БП 12В есть ошибки: 2200 электролит перевернуть надо, а то у него + на GND (бахнет так). + и АС нужно переразвести, получается АС идет на микросхему а + идет на вход переменки. Ерунда получается на печатке, бахнет 100%. Исправьте или предупредите, что есть ошибки. Другие ПП тоже посмотрю позже. Хочу собрать данный девайс. Если соберу и все будет ок, поделюсь своими ПП. Спасибо Вам.

  14. kagantsov:
    Октябрь 5, 2017

    В ПП БП 330В с диодным мостом та же ситуация.

  15. Главный редактор:
    Октябрь 5, 2017

    Печатные платы в формате pdf из первоисточника.

    Платы в формате SLayout от корпорации «Марс».

    Ни то, ни другое редакцией не проверялось.

    Спасибо за информацию!

    В любом случае, внимательность и осторожность при повторении любых конструкции не помешает.

  16. Mars_Atlant:
    Октябрь 5, 2017

    Добрый вечер.

    Благодарю за заметки, шелкографию подправил и отправил на обновления архива.

  17. Главный редактор:
    Октябрь 5, 2017

    Архив с платами в формате SLayout обновлён!

  18. kagantsov:
    Октябрь 5, 2017

    Так то все сходится, но у диодных мостов АС по середине. Извините за упертость, но если уж делать то — хорошо.

  19. Главный редактор:
    Октябрь 6, 2017

    Упёртость приветствуется! Мы двумя руками «за» рабочие завершённые конструкции.

    Кстати, хотелось бы потом услышать мнение, впечатление и т.п. о схеме...

  20. kagantsov:
    Октябрь 6, 2017

    ОК. Но будет не скоро. Времени мало и проекты движутся медленно. Акустику вот доделал 2 недели назад, 2,5 года делал. Ну с фильтром может веселее будет.)

  21. Mars_Atlant:
    Октябрь 6, 2017

    Доброе утро.

    Отчасти Вы все правы по диодному мосту, но данный вид диодного моста существует и с другой распиновкой выводов, порядок ног. Можете ознакомится самостоятельно в сети.

    Я «делал», вернее срисовывал, ПП согласно представленным на данном ресурсе фото ПП.

    Все соответствует оригинальным материалам, чтобы не вызывать путаницу, если буду возникать вопросы по данной конструкции.

    Вы так-же можете выложить свои версии ПП на форум. Возможно кому-то это облегчит сборку данной конструкции.

    Всем хорошего звука.

  22. kemper:
    Октябрь 11, 2017

    я использовал лампы 6н2 и 6п43 звук порадовал, правда не знаю как звучит 86 лампа, я ее ненашёл, (можно 6н1 звук показался немного более жёстким) снизил напряжение питания до 250в

  23. Главный редактор:
    Октябрь 11, 2017

    PCL86 очень похожа на нашу 6Ф3П (а этого добра, как грязи) и на ecl82.

    Только с накалом надо повнимательнее — у перечисленных ламп он 6,3В!

  24. kagantsov:
    Октябрь 13, 2017

    Добрый день. У меня как раз лежит 2 лампы PCL86, а отличие 6Ф3П только в накале? Питание остается то же — 330В?

  25. Главный редактор:
    Октябрь 13, 2017

    А в справочник заглянуть религия не позволяет?

    Там чётко сказано: предельное напряжение на аноде для триода 250В, для пентода 275В.

    Делаем выводы, исходя из полученной информации.

  26. Grey:
    Август 14, 2018

    Здравствуйте! Хочу использовать схему этого высоковольтного стабилизатора для запитки УНЧ Моргана Джонса на 220 в. Подобных схем на сайтах много, с методой расчета элементов почти разобрался. Но на них отсутствует R2. Подобная схема в «Современный гибридный усилитель» от 02.08.2014 , но там номинал R2 совсем другой. Подскажите пожалуйста назначение R2 и как его расчитать для схемы на 220 вольт.

  27. Главный редактор:
    Август 14, 2018

    R2 здесь типа небольшой развязки (фильтра).

    Номинал не сильно принципиален.

    При существенных токах потребления его лучше совсем убрать, чтобы не снижать КПД.

    А так можно оставить на 100Ом.

  28. Grey:
    Август 15, 2018

    Спасибо большое! Всех благ!

Добавить комментарий

Спамеры, не тратьте своё время - все комментарии модерируются!!!
All comments are moderated!

Вы должны , чтобы оставить комментарий.

Игорь ГУСЕВ, Андрей МАРКИТАНОВ

Гаврила был аудиофилом,
Гаврила ЦАПы создавал…

Действительно, почему бы нам не сделать ЦАП своими руками? Нужно ли это вообще? Конечно! Внешний конвертор пригодится, в первую очередь, владельцам CD-проигрывателей, выпущенных 5 - 10 лет назад. Техника цифровой обработки звука развивается бурными темпами, и идея оживить саунд старенького, но любимого аппарата с помощью внешнего ЦАПа представляется весьма заманчивой. Во-вторых, такое устройство может принести большую пользу тем, у кого есть недорогая модель, оснащенная цифровым выходом, - это шанс поднять его звучание на новый уровень.

Не секрет, что, создавая недорогой CD-проигрыватель, разработчик находится в жестких финансовых рамках: ему нужно и транспорт поприличнее выбрать, и оснастить новинку всяким сервисом по максимуму, вывести на переднюю панель побольше кнопок с многофункциональным индикатором и т.д., иначе по жестким законам рынка аппарат не будет продаваться. Через год, как правило, появится новый, который подчас ничем не лучше старого по звучанию (а зачастую и хуже), и так до бесконечности. А большинство крупных фирм обычно меняют весь модельный ряд каждую весну…

На качественный ЦАП и аналоговую часть схемы выделенных средств обычно не хватает, и многие производители на этом откровенно экономят. Из этого правила есть, правда, исключения, когда подобные решения принимаются намеренно, являясь элементом технической политики фирмы.

Например, хорошо известная нашим аудиофилам японская С.Е.С. ставит в свои модели CD2100 и CD3100 дорогой транспорт с большим количеством ручных регулировок, применяя при этом простенький ЦАП, явно по классу не соответствующий механике. Эти аппараты позиционируются фирмой как транспорт с контрольным аудиотрактом и изначально предназначены для работы с внешним конвертором. Несколько иная ситуация с проигрывателями ТЕАС VRDS 10 - 25. Устанавливая высококлассный привод и дорогие микросхемы ЦАП TDA1547 (DAC 7), инженеры почему-то решили сэкономить на выходных каскадах. Одна российская фирма, зная об этой особенности моделей, делает апгрейд, заменяя аналоговую часть схемы.

Об авторах

Андрей Маркитанов, инженер КБ звукотехники «Три В» из Таганрога. Разрабатывает и внедряет в производство ЦАПы под маркой «Markan», постоянный участник выставок «Российский Hi-End». Любит нестандартные решения, следит за аудиомодой, всегда в курсе последних достижений в области цифровой схемотехники. На память знает распиновку многих чипов Crystal, Burr-Brown и Philips.

Немного теории

Итак, решено - делаем ЦАП. Прежде чем мы начнем рассматривать схему, нелишне будет расшифровать некоторые общепринятые сокращения:

S/PDIF (Sony/Philips Digital Interface Format) - стандарт на цифровую передачу звуковых данных между устройствами (асинхронный интерфейс с самосинхронизацией). Также существует оптический вариант TosLink (от слов Toshiba и Link). Таким интерфейсом оснащаются практически все модели недорогих CD-плейеров, но сейчас он считается устаревшим. Существуют более совершенные интерфейсы, применяемые в дорогих аппаратах, но мы пока о них говорить не будем.

DAC (ЦАП) - цифро-аналоговый преобразователь.

IIS (Inter IC Signal bus) - стандарт на синхронный интерфейс между элементами схемы в пределах одного устройства.

PLL (Phase Locked Loop, ФАПЧ) - система фазовой автоподстройки частоты.

Emphasis - предыскажения.

В настоящее время для формата CD Audio существует два совершенно различных способа цифро-аналогового преобразования: однобитовый и мультибитовый. Не вдаваясь в подробности каждого из них, отметим, что в подавляющем большинстве дорогих моделей DAC используется мультибитовое преобразование. Почему в дорогих? Для достойной реализации такого варианта требуется качественный многоканальный источник питания, сложная процедура настройки выходных фильтров, в некоторых моделях она выполняется вручную, а в развитых странах работа квалифицированного специалиста дешево стоить не может.

Однако однобитовые преобразователи также имеют немало поклонников, т.к. у них своеобразный характер подачи звука, некоторые особенности которого трудно достижимы с помощью существующей мультибитовой технологии. К ним можно отнести более высокую линейность однобитовых ЦАПов на малых уровнях сигнала, а следовательно - лучшую микродинамику, отчетливое детальное звучание. В свою очередь, аргументом сторонников мультибитовых ЦАПов является более сильное эмоциональное воздействие на слушателя, масштабность и открытость звука, отлично воспроизводятся т.н. «драйв» и «чес», что особо ценится любителями рока.

По идее, для безупречной работы однобитовых ЦАПов требуется очень высокая тактовая частота. В нашем случае, т.е. 16 бит и 44,1 кГц, она должна составлять около 2,9 ГГц, что является абсолютно неприемлемым значением с технической точки зрения. С помощью математических трюков и всевозможных пересчетов ее удается уменьшить до приемлемых значений в пределах нескольких десятков мегагерц. Видимо, этим и объясняются некоторые особенности звучания однобитовых ЦАПов. Так какой же лучше? Мы опишем оба варианта, а уж какой выбрать - решайте сами.

Главное, чем мы руководствовались при разработке схемы, - ее предельная простота, позволяющая понять идею и реализовать ее в конкретной конструкции даже не искушенному в цифровой технике аудиофилу. Тем не менее, описываемый ЦАП способен заметно облагородить звучание бюджетного аппарата, оснащенного коаксиальным цифровым выходом. Если ваш проигрыватель такового не имеет, то несложно будет организовать его самостоятельно. Для этого в большинстве случаев достаточно установить на задней стенке разъем RCA и подпаять его сигнальный лепесток к соответствующему месту на плате. Как правило, базовый вариант motherboard делается на несколько моделей сразу, только «набивается» по-разному, и на ней должно быть место для впайки гнезда цифрового выхода. Если это не так, придется искать схему аппарата - в авторизованных сервис-центрах, на радиорынках или в Интернете. В дальнейшем этот макет может послужить объектом приложения усилий для его дальнейшего улучшения и позволит, наконец, добиться «нежной дымки над чистым образом».

Практически все аппараты подобного назначения строятся на схожей элементной базе, выбор элементов для разработчика не так уж и широк. Из доступных в России назовем микросхемы Burr-Brown, Crystal Semiconductors, Analog Devices, Philips. Из приемников S/PDIF сигнала сейчас по приемлемым ценам более-менее доступны CS8412, CS8414, CS8420 от Crystal Semiconductors, DIR1700 от Burr-Brown, AD1892 от Analog Devices. Выбор самих ЦАПов несколько шире, но в нашем случае оптимальным представляется использование CS4328, CS4329, CS4390 с преобразованием дельта-сигма, они наиболее полно отвечают критерию качество/цена. Широко распространенные в High End мультибитовые чипы Burr-Brown РСМ63 стоимостью 96 долларов или более современные PCM1702 требуют еще и определенных типов цифровых фильтров, которые тоже недешевы.

Итак, выбираем продукцию Crystal Semiconductors, а документацию на микросхемы с подробным их описанием, распиновкой и таблицами состояний можно скачать с сайта www.crystal.com.

Детали преобразователя
Сопротивления
R1 220 1/4 w
R2 75 1/4 w
R3 2k 1/4 w
R4 - R7 1k 1/4 w
R8, R9 470k 1/4 w углерод
Конденсаторы
С1 1,0 мкФ керамика
С2, С4, С8, С9 1000 мкФ х 6,3 В оксидные
С3, С5, С7, С120 1 мкФ керамика
С6 0,047 мкФ керамика
С10, С11 1,0 мкФ К40-У9 (бумага)
Полупроводники
VD1 АЛ309 красный светодиод
VT1 КТ3102А n-p-n транзистор
U1 CS8412 приемник цифрового сигнала
U2 74HC86 TTL-буфер
U3 CS4390 ЦАП

Переходим к схеме

Итак, остается вопрос: какую же схему выбрать? Как уже говорилось, она должна быть несложной, доступной для повторения и обладать достаточным потенциалом качества звучания. Также представляется обязательным наличие переключателя абсолютной фазы, что позволит лучше согласовать ЦАП с остальными элементами звукового тракта. Вот оптимальный, на наш взгляд, вариант: цифровой приемник CS8412 и однобитовый ЦАП CS4390 стоимостью около $7 за корпус (лучше постараться найти вариант DIP, это заметно облегчит монтаж). Этот ЦАП применяется в известной модели проигрывателя Meridian 508.24 и до сих пор у Crystal считается лучшим. В мультибитовом варианте используется чип Philips TDA1543. Схема однобитового преобразователя выглядит следующим образом:

Резисторы R1-R7 малогабаритные, любого типа, а вот R8 и R9 лучше взять серии ВС или импортные углеродистые. Электролитические конденсаторы С2, С4, С8, С9 должны быть номиналом не менее 1000 мкФ с рабочим напряжением 6,3 - 10 В. Конденсаторы С1, С3, С5, С6, С7 - керамические. С10, С11 желательно применить К40-У9 или МБГЧ (бумага в масле), но подойдут и пленочные К77, К71, К73 (перечислены в порядке уменьшения приоритета). Трансформатор Т1 - для цифрового аудио, достать его не проблема. Можно попробовать применить трансформатор от неисправной компьютерной сетевой платы. На схеме не показано подключение питания микросхемы U2, минус подается на 7-ю ножку, а плюс - на 14-ю.

Для максимального использования звукового потенциала схемы желательно придерживаться следующих правил монтажа. Все соединения к общему проводу (помечен значком GND) лучше произвести в одной точке, например, на выводе 7 микросхемы U2. Наибольшее внимание следует уделить входному узлу цифрового сигнала, который включает в себя входное гнездо, элементы С1, Т1, R2 и выводы 9,10 микросхемы U1.

Необходимо использовать максимально короткие соединения и выводы компонентов. То же самое относится к узлу, состоящему из элементов R5, C6 и выводов 20, 21 микросхемы U1. Электролитические конденсаторы с соответствующими керамическими шунтами должны быть установлены в непосредственной близости от выводов питания микросхем и соединены с ними проводниками минимальной длины. На схеме не показаны еще один электролит и керамический конденсатор, которые подключаются непосредственно на выводы питания 7 и 14 микросхемы U2. Необходимо также соединить между собой выводы 1, 2, 4, 5, 7, 9, 10 микросхемы U2.

После приобретения некоторого опыта вы сможете на слух подбирать величину и тип электролитических и керамических конденсаторов, стоящих в цепях питания на каждом конкретном участке.

Теперь несколько слов о работе самой схемы. Светодиод D1 служит для индикации захвата цифровым приемником U1 сигнала с транспорта и наличия ошибок считывания. В процессе нормального воспроизведения он светиться не должен. Контакты S1 переключают абсолютную фазу сигнала на выходе, это аналогично изменению полярности акустических кабелей. Меняя фазировку, вы сможете заметить, как она влияет на звучание всего тракта. В ЦАПе имеется также схема коррекции де-эмфазиса (вывод 2/U3), и хотя дисков с пре-эмфазисом выпущено не много, такая функция может пригодиться.

Теперь о выходных цепях. Непосредственное подключение микросхемы ЦАП к выходу только через разделительные конденсаторы возможно, поскольку в микросхеме CS4390 уже есть встроенный аналоговый фильтр и даже выходной буфер. По аналогичному принципу построены чипы CS4329 и CS4327, хорошую аналоговую часть также имел ЦАП CS4328. Если вы знаете, как сделать качественные ФНЧ и согласующие каскады, стоит попробовать свои силы на великолепной микросхеме CS4303, которая на выходе имеет цифровой сигнал и дает возможность построения отлично звучащего аппарата, если, например, к ней подключить ламповый буфер с кенотронным питанием.

Но вернемся к нашей CS4390. Принцип построения однобитовых ЦАПов предполагает наличие во внутренних цепях питания значительных по амплитуде импульсных помех. Для уменьшения их влияния на выходной сигнал выход таких ЦАПов практически всегда делают по дифференциальной схеме. Нас же в данном случае не интересуют рекордные показатели по значению сигнал/шум, поэтому мы используем только один выход для каждого канала, что позволяет избежать применения дополнительных аналоговых каскадов, которые могут отрицательно повлиять на звук. Амплитуда сигнала на выходных гнездах вполне достаточна для нормальной работы, а встроенный буфер неплохо справляется с такой нагрузкой, как межблочный кабель и входное сопротивление усилителя.

Теперь поговорим о питании нашего устройства. Звук - это просто модулированный источник питания и ничего больше. Каково питание, таков и звук. Этому вопросу постараемся уделить особое внимание. Начальный вариант стабилизатора питания для нашего устройства показан на рис.2

Достоинства этой схемы - в простоте и понятности. При общем выпрямителе используются разные стабилизаторы для цифровой и аналоговой частей схемы - это обязательно. Между собой они развязаны по входу фильтром, состоящим из С1, L1, С2, С3. Вместо пятивольтовых стабилизаторов 7805 лучше поставить регулируемые LM317 с соответствующими резистивными делителями в цепи управляющего вывода. Расчет номиналов сопротивлений можно найти в любом справочнике по линейным микросхемам. LM317 по сравнению с 7805 имеют более широкий частотный диапазон (не забывайте, что по цепям питания у нас идет не только постоянный ток, но и широкополосный цифровой сигнал), меньшие внутренние шумы и более спокойную реакцию на импульсную нагрузку. Дело в том, что при появлении импульсной помехи (а их по питанию видимо-невидимо!) схема стабилизации, охваченная глубокой отрицательной обратной связью (она необходима для получения высокого коэффициента стабилизации и малого выходного сопротивления), пытается ее скомпенсировать. Как положено для схем с ООС, возникает затухающий колебательный процесс, на который накладываются вновь пришедшие помехи, и в результате выходное напряжение постоянно прыгает вверх-вниз. Отсюда следует, что для питания цифровых схем желательно использовать стабилизаторы на дискретных элементах, не содержащие ОС. Конечно, в таком случае выходное сопротивление источника будет значительно выше, поэтому вся ответственность за борьбу с импульсными помехами перекладывается на шунтирующие конденсаторы, которые с этой задачей справляются неплохо, и это благотворно сказывается на звучании. Кроме того, явно вырисовывается необходимость применения для каждого вывода питания цифровых микросхем отдельного стабилизатора вместе с элементами развязки по питанию (аналогично L1, С2, С3 на рис.2).

В ЦАПах Markan так и сделано, причем фильтр с дополнительным подавлением цифровых помех и выпрямитель работают от отдельной обмотки сетевого трансформатора, а для дополнительной развязки цифровой и аналоговой частей схемы даже используются разные трансформаторы. Так же делается и для дальнейшего усовершенствования нашего ЦАПа, хотя для начала можно использовать схему на рис.2, она обеспечит начальный уровень качества звучания. В выпрямителе лучше применять быстрые диоды Шоттки.

Мультибитовый вариант схемы

Обычно мультибитовые ЦАПы требуют для своей работы нескольких источников напряжения разной полярности и немалого количества дополнительных дискретных элементов. Среди большого разнообразия микросхем остановим свой выбор на Philips TDA1543. Этот ЦАП является «бюджетной» версией великолепной микросхемы TDA 1541, стоит копейки и доступен в розничной продаже у нас в стране.

Микросхема TDA 1541 применялась в CD-проигрывателе Arcam Alpha 5, в свое время собравшем множество призов, хотя его же сильно и ругали - допотопный ЦАП, сильные помехи, но ведь как звучит! Эта микросхема также до сих пор применяется в проигрывателях Naim. TDA1543 великолепно подходит для наших целей, т.к. для него необходим только один источник питания +5 В и он не требует дополнительных деталей. Отпаиваем CS4390 от цифрового приемника и на ее место подключаем TDA 1543 в соответствии со схемой на рис. 3.

Здесь необходимо дать несколько дополнительных разъяснений. Все мультибитовые ЦАПы имеют токовый выход, и для преобразования сигнала в напряжение существуют несколько схемотехнических решений. Наиболее распространенное - операционный усилитель, подключенный инвертирующим входом к выходу ЦАПа. Преобразование ток-напряжение осуществляется за счет ОС, его охватывающей. По теории он работает замечательно, и такой подход считается классическим - его можно встретить в рекомендованных вариантах включения любого мультибитового ЦАПа. Но если говорить о звучании, то тут все не так просто. Для реализации этого метода на практике требуются очень качественные ОУ с хорошими скоростными характеристиками, например AD811 или AD817, которые стоят более $5 за штуку. Поэтому в бюджетных конструкциях чаще поступают по-другому: просто подключают к выходу ЦАПа обычный резистор, и ток, проходя по нему, будет создавать падение напряжения, т.е. полноценный сигнал. Величина этого напряжения будет прямо пропорциональна величине резистора и току, через него протекающему. Несмотря на кажущуюся простоту и изящество этого метода, он пока не получил широкого применения у производителей дорогой аппаратуры, т.к. также имеет множество подводных камней. Главная проблема в том, что токовый выход ЦАПов не предусматривает наличия напряжения на нем и обычно защищен диодами, включенными встречно-параллельно и вносящими значительные искажения в получаемый на резисторе сигнал. Среди известных производителей, которые все-таки решились на такой метод, следует выделить фирму Kondo, которая в своем M-100DAC ставит резистор, намотанный серебряной проволокой. Очевидно, что он имеет очень маленькое сопротивление и амплитуда выходного сигнала также очень мала. Для получения стандартной амплитуды используется несколько ламповых каскадов усиления. Еще одной известной фирмой с нетрадиционным подходом к вопросу преобразования ток-напряжение, является Audio Note. В своих ЦАПах она применяет для этих целей трансформатор, в котором ток, проходящий через первичную обмотку, вызывает магнитный поток, приводящий к появлению на вторичной обмотке напряжения сигнала. Такой же принцип реализован в некоторых ЦАПах серии «Markan».

Но вернемся к TDA 1543. Похоже, что разработчики этой микросхемы по каким-то причинам не установили защитные диоды на выходе. Это открывает перспективу для использования резисторного преобразователя ток-напряжение. Сопротивления R2 и R4 на рис. 3 - как раз для этого. При указанных номиналах амплитуда выходного сигнала составляет около 1 В, чего вполне достаточно для непосредственного подключения ЦАПа к усилителю мощности. Следует отметить, что нагрузочная способность нашей схемы не очень велика и при неблагоприятных условиях (большая емкость межблочного кабеля, малое входное сопротивление усилителя мощности и др.) звучание может быть слегка зажатым по динамике и «размазанным». В этом случае поможет выходной буфер, схему и конструкцию которого вы можете выбрать из множества существующих вариантов. Может случиться, что в некоторых выпускаемых вариантах микросхемы TDA 1543 защитные диоды все-таки установлены (хотя в спецификациях таких сведений нет, и конкретные экземпляры нам также не попадались). В этом случае удастся снять с нее сигнал амплитудой не более 0,2 В, и придется использовать выходной усилитель. Для этого необходимо в 5 раз уменьшить номинал резисторов R2 и R4. Конденсаторы С2 и С4 на рис. 3 образуют фильтр первого порядка, устраняющий ВЧ-помехи из аналогового сигнала и формирующий нужную АЧХ в верхней части диапазона.

Во многих конструкциях ЦАПов используются цифровые фильтры, что значительно облегчает задачу разработчику при проектировании аналоговой части, но при этом на ЦФ ложится большая часть ответственности за конечное звучание аппарата. В последнее время от них стали отказываться, поскольку грамотный аналоговый фильтр эффективно подавляет ВЧ-шумы и не так пагубно влияет на музыкальность. Именно так сделано в ЦАПах «Markan», в которых используется обычный фильтр третьего порядка с линейной фазовой характеристикой, выполненный на LC-элементах. В нашей схеме на рис. 3 для простоты применен аналоговый фильтр первого порядка, которого в большинстве случаев вполне достаточно, особенно если вы используете ламповый усилитель мощности, да еще и без обратных связей. Если же у вас аппаратура транзисторная, то вполне возможно, что придется увеличить порядок фильтра (однако не переусердствуйте, слишком крутая схема обязательно ухудшит звучание). Соответствующие схемы и формулы для расчета вы найдете в любом приличном радиолюбительском справочнике.

Обратите внимание, что резисторы R2, R4 и конденсаторы C2, C4 находятся именно в том месте, где зарождается аналоговый звук. High End начинается именно отсюда и, что называется, «далее везде». От качества этих элементов (особенно от резисторов) в огромной степени будет зависеть звучание всего аппарата. Резисторы необходимо ставить углеродистые ВС, УЛИ или бороуглеродистые БЛП (предварительно подобрав их по одинаковости сопротивлений с помощью омметра), применение импортной экзотики также приветствуется. Конденсаторы допустимы любого типа из указанных выше. Все соединения должны быть минимальной длины. Разумеется, качественные выходные разъемы также необходимы.

Что же у нас получилось?

Я раньше скверно пел куплеты,
хрипел, орал и врал мотив…

(Дж. К. Джером, «Трое в лодке,
не считая собаки»)

Не поленюсь напомнить, что перед первым включением устройства необходимо тщательно проверить весь монтаж. Регулятор громкости усилителя при этом нужно устанавливать в минимальное положение и плавно увеличивать громкость, если помехи, свист и фон на выходе отсутствуют. Будьте внимательны и аккуратны!

В целом для однобитовых ЦАПов характерно очень мягкое, приятное звучание, с обилием тонких деталей. Кажется, что весь свой звуковой потенциал они бросают на помощь солисту, оттесняя других участников музыкального произведения куда-то на задний план. Большие оркестры несколько «уменьшаются» по составу музыкантов, страдают мощь и масштабность их звучания. Мультибитовые ЦАПы уделяют одинаковое внимание всем участникам музыкального действия, не отдаляя и не выделяя никого из них. Динамический диапазон шире, звучание более ровное, но в то же время несколько более отстраненное.

Например, при воспроизведении через мультибитовый ЦАП хорошо известной песни «I Put A Spell on You» в исполнении Creedence Clearwater Revival великолепно передается ее энергетика, мощный поток эмоций просто завораживает, становится понятным замысел ее создателей, мы остро чувствуем, что они хотели нам сказать. Мелкие детали несколько смазаны, но на фоне описанных выше доминирующих характеристик такой подачи звука это не кажется серьезным недостатком. При воспроизведении этой же песни через однобитовый ЦАП картина несколько иная: звучание не столь масштабно, сцена несколько отодвинута назад, зато отлично слышны подробности звукоизвлечения, мелкие штрихи. Хорошо передается момент, когда музыкант приближает гитару к комбику, добиваясь легкого самовозбуждения усилителя. Зато при прослушивании Элвиса Пресли великолепно раскрывается все богатство его голоса. Хорошо заметно, как он менялся с возрастом, эмоциональное воздействие на слушателя также сильно, а несколько отодвинутый на задний план аккомпанемент органично вписывается в общую картину.

Так что выбор типа ЦАПа остается за вами, у обоих вариантов есть как сильные, так и слабые стороны, истина, разумеется, лежит где-то посередине. Несмотря на простоту, звуковой потенциал описанных схем достаточно высок, и при творческом выполнении приведенных рекомендаций конечные результаты вас разочаровать не должны. Желаем успеха!

На вопросы разработчик схемы

Чтобы идти дальше в конструировании усилителей, я уперся в проблему качественного источника. Очень был нужен хороший ЦАП. Качеством тех, которые я имел дома и которые приходилось слушать до этого я не был удовлетворен в полной мере. Если это классический ЦАП на операционных усилителях на выходе, то это как правило приводит к проблемке воспроизведения верхней середины и верхов. Середина становится слегка режущей ухо, резковатой, как-бы с песочком или металлом в голосе, особенно на высокой громкости. С ламповыми ЦАПами тоже не все в порядке – часто нет хорошего баса или плоский, невыразительный звук, да и к тому же, почему-то разработчики очень любят ставить на выходе катодный повторитель, который хотя и снижает выходное сопротивление, но по моему скромному мнению звука мягко говоря не украшает. В общем, пришел к выводу, что надо делать самому.

Почему я выбрал Ад1955 ? Ее выход рассчитан на I – U преобразователь с током 3 – 5 мА положительной полярности. А тут – широкое поле вариантов для подключения к высокому анодному напряжению таким образом, чтобы выходной ток микросхемы ЦАПа проходил через лампу.

Да, конечно, я хотел ЦАП с ламповым выходом. А учитывая мою слабость к каскадам с общей сеткой и трансформаторам – то выход был запланирован на моей любимой лампе 6Э6П с трансформаторным выходом. Выбор этой лампы обусловлен также ее невысоким внутренним сопротивлением в триоде, а также высокой крутизной (30 мА на вольт), а в случае с каскадом с общей сеткой это дает пониженное входное сопротивление – и это очень хорошо для I – U преобразователей ЦАПов, для которых входное сопротивление должно стремиться к нулю. Логично сделать вход I – U преобразователя на германиевом транзисторе включенном по схеме с общей базой. Отсюда родилась и схема. По моим грубым прикидкам входное сопротивление моего гибридного каскода где-то порядка 1 Ом. Как посчитал? Берем формулу расчета входного сопротивления каскада с общей сеткой Rin = (Ra + Ri)/(u +1). В нагрузке лампы 3.3 КОма, сама 6Э6П в триоде имеет около 1500 Ом. Складываем и делим на 30 – это коэффициент усиления лампы. Получается 160 Ом. Это входное сопротивление лампы, включенной по схеме с общей сеткой. Теперь для транзистора – лампа является нагрузкой Rа. Внутреннее сопротивление германиевого транзистора я не знаю, но берем грубо 50 Ом, тогда если его Кус около 250, то (160 + 50) / 250 = 0.84 Ома.

Если кому-то 6Э6П покажется слишком подчеркивающей середину, то ее можно заменить на 6Ж9П, 6Ж11П или 6Ж49П. Только в этом случае следует обратить внимание на то, чтобы коллектор транзистора был соединен с выводами 1 или 3 ламповой панельки (а не с выводом 6) – тогда вы сможете простым перетыком выбрать ту лампочку, которая вам покажется более певучей.

Привожу первый вариант схемы, хотя уверен, придется его доработать, потому что нет предела совершенству….

Чтобы самому не делать цифровую часть, я взял на е-Вае платку ЦАПа на АД1955 и удалил из нее операционные усилители, также отпаял от выходов АД1955 положенные по даташиту резисторы 2К от плюса питания, а 100 пф (конденсаторы С1 и С2 на схеме) оставил те, которые были на плате. Более подробную деталировку дам чуть позднее.

В качестве блока питания пробовал транзисторный стабилизатор, но все-таки оказался лучшим по звуку ламповый удвоитель на 6Н1П, которая все-таки потом была заменена на ЕСС99. Причина применения этой редкой лампы проста – для упаковки своего ЦАПа я использовал корпус от китайского ЦАПа Lite, который приказал долго жить, слава богу, корпус я не выкинул. Пригодились оба сетевых трансформатора, сетевая кнопка и разъемы входов – выходов. Вот схема БП:

Как видно, накал 6Э6П питается постоянным током, но нестабилизированным.

Теперь немного о прослушивании. Источник – СД-плейер Денон 1500 и сравнивал с его моим ЦАПом, подача сигнала через оптический цифровой кабель. Усилитель – мой каскод на 6Э5П – 2А3 . Колонки – широкополосник в ОЯ от 3АС505. Первое впечатление было совсем плохим, я был очень огорчен и уже собирался отнести свое творение в чулан в компанию к другим неудачным проектам. Мне показалось, что мой ЦАП дает излишне резкий женский вокал и трубу. Но потом – о чудо! – оказалось, что это я на коммутаторе перед усилителем перепутал входы – то, в чем я разочаровался – это был как раз Деноновский ЦАП, а вот мой ЦАП дает прекрасную подачу материала! И тембральный баланс, ширина сцены, и эмоциональная насыщенность будут повыше, чем у Денона. В общем, поет чистенько, детально, прозрачно, и что особенно отличает от моего фирменного Денона – очень мягкая подача вокала и вообще верхней середины и верхов – никакого звона, излишней резкости практически на любой громкости, в общем – намного натуральнее. Тут уместно сказать про “окраску” звука. Как и в колориметрии, говоря про окраску, важно ответить на вопрос – а что принято за эталон белого? Если за этот эталон принять транзисторный звук – то да, лампы дают “окраску”. Но в моем понятии ламповый звук – это и есть эталон белого. А операционные усилители на выходе (кстати, всегда применяемые с глубокой ООС) дают слегка металлическую окраску и немного ненатуральный верхний регистр, что живому исполнению имхо не присуще. В общем остался весьма и весьма доволен своим творением.

Вот его характеристики

– выходное напряжие на уровне 0 дБ – 2 Вольта;

– уровень шумов – менее -80 дБ, меньше просто не нечем померить;

– суммарный коэффициент гармоник на максимальном уровне – менее 0.15 % – опять-таки пока точнее не могу измерить.

– входы – оптический и SPDIF;

– выходы – небалансный 2 Вольта и балансный 10 Вольт;

– выходное сопротивление – на небалансном выходе – менее 100 Ом, балансный выход – около 2 КОм;

– схема не содержит цепей ООС.

Вот как выглядит упакованный в корпус прибор и фото всего комплекта аппаратуры для прослушивания.

Выходные трансформаторы были намотаны на заказ в фирме Аудиоинструмент, за что поклон Сергею Глазунову. А еще – читайте на форуме http://www.diyaudio.ru/forum/index.php?topic=4180.0 . Мои первые попытки (не совсем удачные) сделать ЦАП только на лампах есть в другой ветке на этом же форуме http://www.diyaudio.ru/forum/index.php?topic=1267.570 .

Дополнено 6 июня 2015 года. Пришлось немного подкорректировать схемку. Во-первых, на пиках громкости наблюдался возбуд (резонансы) и поэтому пришлось добавить конденсаторы С3 и С5 в сетки ламп, а также С1 и С6 в аноды. Также, по причине дрейфа напряжения на выходе АД1955 пришлось застабилизировать базы транзиcторов при помощи стабилитрона Д1 на 3.0 вольта. Ну, и все-таки 6Э6П я заменил на 6Ж49П – мне она из всех перечисленных ранее показалась самой сбалансированной тембрально.

****************************************************************************************************

Попалась мне как-то на глаза схема ЦАП на PCM2704. И очень мне захотелось её повторить. Подкупала простота и хорошие отзывы. Потом, когда начал помаленьку прирастать знаниями, обнаружилось, что эта микросхема не единственная, да и реализованных любительских ЦАПов хоть пруд пруди. Почитав некоторые форумы выяснил. Есть мнение, что микросхема PCM2702E хоть и имеет меньший функционал, зато, по отзывам пишущих, дает более приятное звучание. Вот и решил я проверить эти высказывания. Покопавшись в интернете выяснил, что PCM2702Е до сих пор считается неплохим ЦАПом хотя давно уже перешагнула возрастной рубеж в 10 лет. Более того, есть много разных схем реализации этого преобразователя с фильтром и усилителем как на кремнии, так и на лампах. Ну а так как лампы для меня сейчас представляют больший интерес, я остановил свой выбор на двух схемах от Laconic Lab .

Но сначала о реализации модуля ЦАП на PCM2702Е.

Aune T1 - это ламповый USB ЦАП с встроенным полупроводниковым усилителем для наушников, проданный в количестве более 50 тыс. шт. по всему миру.

Основные характеристики

1. Внешний линейный высококачественный блок питания, в котором реализована дополнительная фильтрация. Подобное решение способствует устранению шумов от источника питания.

2. ЦАП реализован на асинхронном USB контроллере SA9027 и чипе PCM1793.

3. Aune T1 Mk2 USB DAC - это внешняя звуковая карта, ЦАП и высококачественный усилитель для наушников в одном корпусе. Aune T1 также может использоваться вместе с активными колонками в составе вашей домашней hi-fi системы.

4. Aune T1 работает под операционными системами Windows 7, 8 , Vista, XP, Mac OS. Возможно подключение к iPad. Установка дополнительных драйверов не требуется.

5. Модуль усилителя для наушников выполнен отдельно и может быть заменен впоследствии при выходе соответствующего апгрейда. Лампа должна полностью прогреться перед тем, как начнется воспроизведение. При включении устройства происходит нагрев лампочки в течение 30 секунд, после чего под ней загорается белый индикатор, и только тогда устройство начинает функционировать. В Aune T1 Mk2 USB DAC также реализована функция переключения режимов усиления.

6. Новый модульный дизайн. Несколько плат внутри устройства питаются независимо, что приводит к устранению перекрестных помех. Также в ЦАПе предусмотрено безопасное отключение, которое предотвращает повреждение ваших наушников или колонок при выключении устройства.

7. Aune T1 Mk2 USB DAC выполнен на высококачественных аудио компонентах: потенциометр ALPS (Япония), конденсаторы WIMA (Германия), электролитный профессиональный звуковой конденсатор ENLA и так далее.

8. Усилитель прокачает наушники с сопротивлением 30-600 Ом. Схема усиления - OP+BUF.

9. В Aune T1 Tube USB DAC реализован один линейный вход и один линейный выход.

Видео (промо, английский)

Технические характеристики

Лампа: 6922EH Electro-Harmonix (Made in Russia)

Частотная характеристика: 20 Hz - 20 kHz

SNR: >=120 dB

Выходная мощность: 1000 mW/32 Ома, 400 mW/120 Ом, 150 mW/300 Ом (максимальная 20 V)

Выходное сопротивление: 100 Ом, 10 Ом (наушники)

USB интерфейс:

Данные до 24 бит / 96 kHz

Операционные системы: Windows XP/Vista/7/8, Mac OS

Питание: AC 220/110 V

Размер: 155*97*40 мм (Д*Ш*В)

Комплектация: блок питания, USB кабель, переходник 6.35 - 3.5 мм